

New alleles of *C. elegans* gene *cls-2* (*R107.6*), called *xc3*, *xc4*, and *xc5*

Nicholas R. Munoz¹, Christopher J. Black¹, Ethan T. Young¹ and Diana S. Chu^{1§}

[§]To whom correspondence should be addressed: chud@sfsu.edu

Figure 1. A. Map of exons, introns and the 3'UTR of *cls-2* (R107.6). B. The eighth exon and 3'UTR of *cls-2* (R107.6) with the position of the *xc3*, *xc4*, and *xc5* mutations indicated in red. C. Alignment of DNA and amino acid sequences in mutant and wildtype worms with mutations in red.

Description

We have generated novel mutant alleles, named xc3, xc4, and xc5, of the gene cls-2 (R107.6) that encode one of the three predicted orthologs of mammalian CLASPs and of Drosophila ORBIT/MAST, microtuble-binding proteins (Akhmanova et al., 2001; Maiato et al., 2002). In C. elegans CLS-2 is required for meiosis and mitosis (Cheeseman et al., 2005; Dumont et al., 2010; Espiritu et al., 2012; Maton et al., 2015; Nahaboo et al., 2015). The alleles were isolated from gene mutations generated by Non-Homologous End Joining (NHEJ) mediated repair of Cas9-generated breaks (Dickinson et al., 2013; Ran et al., 2013). The alleles were detected by PCR using the following primers, 5'- CGATACGTCGGAGCAGAGC -3' and 5'-CGGGGGTCGAAAATCATAAGG -3'. Next Generation Sequencing allowed us to identify 30 bp flanking sequences of the xc5 TTGTCCAAGTCTACGTCAATCGGGCAATGT alleles *xc*3, *xc*4, and as - [42 bp AGCCCATAATTCCCCCGTATTCGTATCCCA, TCTACGTCAATCGGGCAATGTCGTCCAGTT - [3 bp deletion, 41 bp (GGTCTGAATGACTTTCGCACTATTCCCCTATTCGCACGCCT)] insertion ATTCGCACGTATGATTCGTCGTTGCAATGT, and AACCTTGTCCAAGTCTACGTCAATCGGGCA – [111 bp deletion] – TCATCCCTTCACTTTGTAATATAATTTTAT, respectively.

Based on information about *cls-2* (*R107.6*) (WormBase, http://www.wormbase.org, WS261), the *xc3*, *xc4*, and *xc5* mutant alleles effect the eighth exon and the 3'-UTR in the same way in each splicing isoform (Fig.1). In the *xc3* mutant, 16 bp of the 3'UTR is deleted and a new stop codon was introduced after an 8 amino acid deletion (SSSHSHV) of the C-terminus of the protein. In *xc4* due to an insertion causing a frameshift mutation, 5 wildtype amino acids (SHSHV) from the C-terminus will be replaced by 3 amino acids (WSE). In *xc5* the endogenous stop codon is deleted as well as 81 bp of the 3'UTR, while a new stop codon is introduced 21 bp after the mutation. Because of the deletion and new stop codon, in the *xc5* mutant 9 amino acids (MSSSSHSHV) in the C-terminus of the protein will be replaced by 7 new amino acids (SSLHFVI). Previous

¹Department of Biology, San Francisco State University, San Francisco, California 94132, USA

12/19/2017 - Open Access

researchers replaced serine residues with non-phosphorylatable alanine residues to study the effect of human CLASP2 phosphorylation (Kumar et al., 2017). The mutations we have generated have multiple serine residues deleted which presents a unique opportunity to study the effect of *cls-2* (*R107.6*) phosphorylation. Since more of the 3'UTR is deleted in *xc5* than *xc3*, the 3'UTR's function could also be studied using these mutants.

Reagents

Alt-R® CRISPR-Cas9 crRNA Alt-R® CRISPR-Cas9 tracrRNA Alt-R® S.p. Cas9 Nuclease

Strains:

XC125 cls-2 (xc3) unc-119 (ed3) III; ieSi38 (IV) XC126 cls-2 (xc4) unc-119 (ed3) III; ieSi38 (IV) XC127 cls-2 (xc5) unc-119 (ed3) III; ieSi38 (IV)

References

Akhmanova, A., Hoogenraad, CC., Drabek, K., Stepanova, T., Dortland, B., Verkerk, T., Vermeulen, W., Burgering, B. M., Zeeuw, D., Grosveld, F., & Galjart, N. (2001). Clasps are CLIP-115 and -170 associating proteins involved in the regional regulation of microtubule dynamics in motile fibroblasts. Cell, 104, 923-35. DOI: 10.1016/S0092-8674(01)00288-4 | PMID: 11290329.

Cheeseman, IM., MacLeod, I., Yates, JR., Oegema, K., & Desai, A. (2005). The CENP-F-like proteins HCP-1 and HCP-2 Target CLASP to Kinetochores to Mediate Chromosome Segregation. Current Biology, 15, 771-777. DOI: 10.1016/j.cub.2005.03.018 | PMID: 15854912.

Dickinson, DJ., Ward, JD., Reiner, DJ., & Goldstein, B. (2013). Engineering the Caenorhabditis elegans genome using Cas9-triggered homologous recombination. Nature Methods 10, 1028-1034. DOI: 10.1038/nmeth.2641 | PMID: 23995389.

Dumont, J., Oegema, K., & Desai, A. (2010). A kinetochore-independent mechanism drives anaphase chromosome separation during acentrosomal meiosis. Nature Cell Biology 12, 894-901. DOI: 10.1038/ncb2093 | PMID: 20729837.

Espiritu, EB., Krueger, LE., Ye, A., & Rose, LS. (2012). CLASPs function redundantly to regulate astral microtubules in the C. elegans embryo. Elsevier, 368, 242-254. DOI: 10.1016/j.ydbio.2012.05.016 | PMID: 22613359.

Kumar, P., Lyle, KS., Gierke, S., Matov, A., Danuser, G., & Wittmann, T. (2017). GSK3β phosphorylation modulates CLASP-microtubule association and lamella microtuble attachment. J Cell Biol, 184, 895-908. DOI: 10.183/jcb.200901042 | PMID: 19289791.

Maiato, H., Sampaio, P., Lemos, CL., Findlay, J., Carmena, M., Earnshaw, WC., & Sunkel, CE. (2002). MAST/Orbit has a role in microtubule-kinetochore attachment and is essential for chromosome alignment and maintenance of spindle bipolarity. J Cell Biol, 157, 749-60. DOI: 10.1083/jcb.200201101 | PMID: 12034769.

Maton, G., Edwards, F., Lacroix, B., Stefanutti, M., Laband, K., Lieury, T., Kim, T., Espeut, J., Canman, JC., & Dumont, J. (2015). Kinetochore components are required for central spindle assembly. Nature Cell Biology 17, 697-705. DOI: 10.1038/ncb3150 | PMID: 25866924.

Nahaboo, W., Melissa, Z., Askjaer, P., & Delattre, M. (2015). Chromatids segregate without centrosomes during Caenorhabditis elegans mitosis in a Ran- and CLASP-dependent manner. MBoC 26, 2020-2029. DOI: 10.1091/mbc.e14-12-1577 | PMID: 25833711.

Ran, FA., Hsu, PD., Wright, W., Agarwala, V., Scott, D., & Zhang, F. (2013). Genome engineering using the CRISPR-Cas9 system. Nature News, 2281-2308. DOI: 10.1038/nprot.2013.143 | PMID: 24157548.

Funding: NSF RUI 1244517, NIH R15 HD068996

Reviewed By: Andrea Kalis

History: Received December 6, 2017 Accepted December 8, 2017 Published December 19, 2017

Copyright: © 2017 by the authors. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International (CC BY 4.0) License, which permits unrestricted use, distribution, and reproduction in any

12/19/2017 - Open Access

medium, provided the original author and source are credited.

Citation: Munoz, NR; Black, CJ; Young, ET; Chu, DS (2017). New alleles of *C. elegans* gene *cls-2 (R107.6)*, called *xc3*, *xc4*, and *xc5*. microPublication Biology. https://doi.org/10.17912/W2RQ2X