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Abstract
The C. elegans dauer is an alternative third stage larva induced by dense population and adverse environmental conditions.
Genes whose mutants caused dauer formation constitutive (Daf-c) and dauer formation defective (Daf-d) phenotypes were
ordered via epistasis into a signaling network, with upstream DAF-7/TGF-beta and DAF-11/receptor guanylyl cyclase defining
sensory branches and downstream DAF-2/Insulin receptor and DAF-12/nuclear hormone receptor executing the dauer
decision. Mutations in the Scd genes were defined as incompletely penetrant suppressors of the constitutive dauer phenotype
conferred by mutation of the DAF-7/TGF-beta signaling axis. SCD-2 was previously shown to be an ortholog of mammalian
ALK (Anaplastic Lymphoma Kinase), a receptor tyrosine kinase. Mutations disrupting the HEN-1/Jeb ligand, SOC-
1/DOS/GAB adaptor protein and SMA-5/ERK5 atypical MAP Kinase caused Scd phenotypes similar to that of mutant SCD-2.
This group regulated expression from a TGF-beta-responsive GFP reporter. Here we find that a strain harboring a mutation in
the uncharacterized SCD-4 is mutant for MLK-1, the C. elegans ortholog of mammalian Mixed Lineage Kinase and
Drosophila slipper (slpr), a MAP3 kinase. We validated this finding by showing that a previously characterized deletion in
MLK-1 caused a Scd phenotype similar to that of mutant SCD-4 and altered expression from the TGF-beta-responsive GFP
reporter, suggesting that SCD-4 and MLK-1 are the same protein. Based on shared phenotypes and molecular identities, we
hypothesize that MLK-1 functions as a MAP3K in the SCD-2/ALK cascade that signals through SMA-5/ERK5 MAP Kinase
to modulate the output of the TGF-beta cascade controlling dauer formation in response to environmental cues.
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Figure 1. Mutant MLK-1/SCD-4 MAP3K suppresses dauer constitutive mutations in a manner similar to the mutant
SCD-2/ALK Receptor Tyrosine Kinase: A) The gene model of mlk-1/scd-4. Pink = SH3 domain, green = S/T kinase
domain. Scale bar = 1000 bp. The scd-4(sa321) mutation causes a G245E change in the kinase domain (also see B, below).
The km19 deletion of the kinase domain (Mizuno, 2004) is indicated by a bracket. B) A subset of an alignment of kinase
domains of C. elegans (Ce) MLK-1 harboring the G245E mutation (red), Drosophila (Dm) slpr and human (Hs) MLK3. C)
The mlk-1(km19) deletion confers a genetic “interaction fingerprint” similar to that of mutations in scd-2, hen-1, soc-1 and
sma-5 and replicates phenotypes conferred by scd-4(sa321) (Reiner et al., 2008). Shown is percent dauer formation at 25˚C
with the set of reference mutations daf-8(e1393), daf-7(e1372), daf-11(m47) and daf-2(e1370) used previously: strong
suppression of the Daf-c phenotype conferred by e1393, moderate suppression of e1372, weak suppression of m47 and no
suppression of e1370. Not shown are the Daf-c single mutants assayed in parallel, which were all 100% dauer at 25˚C. P<
0.0001, <0.0001, =0.002 and n.s., respectively (Chi square with Yates correction). mlk-1(km19) and N2 wild type yielded no
dauers when scored in parallel at 25˚C. D) A schematic of major signaling axes in the dauer regulatory network that are
mutated to a dauer constitutive (Daf-c) phenotype. DAF-11/receptor guanylyl cyclase and DAF-7/TGF-beta define major
sensory inputs. DAF-8/Smad is lesser player downstream of DAF-7/TGF-beta, and is mutated to a weaker Daf-c phenotype.
By genetic interactions, DAF-2/InsR functions downstream of the DAF-7 and DAF-11 axes. E) Pharyngeal GFP expression
from the DAF-3/co-Smad-responsive reporter cuIs2 was previously shown to be suppressed by mutation of DAF-7/TGF-beta
(Thatcher et al.., 1999; Reiner et al., 2008; left panel) and was restored by additional mutation of SCD-2/ALK (center) and
MLK-1/SCD-4/MAP3K (right panel). Scale bar = 10 µm. F) Quantified pixel intensity of pharyngeal GFP signal from cuIs2
in the daf-7 single mutant and double mutants with scd-2 and mlk-1, respectively, measured as arbitrary units on a Nikon
eclipse Ni epifluorescent microscope with DS-Fi2 camera (Nikon) and NIS Elements Advanced research, version 4.40
(Nikon). Error bars represent std error and P value was calculated by ANOVA.

Description

 

6/15/2021 - Open Access

https://www.micropublication.org/media/2021/06/080620211623177897.jpeg


 

The C. elegans dauer is an alternative L3 stage larva that forms under harsh environmental conditions, including low food,
high temperature, and high concentration of constitutively secreted dauer pheromone. Genetic screens identified genes
conferring dauer-constitutive and dauer-defective phenotypes (Daf-c and Daf-d, respectively; Hu, 2007). Double mutant
analysis using principles of epistasis and parallelism ordered genes controlling the dauer process into a network (Gottlieb and
Ruvkun, 1994; Thomas et al., 1993). Molecular genetic cloning of genes provided identities with similarity to orthologs in
Drosophila and mammals. Taken together, these approaches arrived at a model of four main signaling axes controlling entry
into dauer: upstream and parallel TGF-beta (DAF-7, mutated to Daf-c) and receptor guanylyl cyclase (DAF-11, mutated to
Daf-c) signals reflect parallel processing by sensory neurons, revealed by laser ablation experiments (Birnby et al., 2000; Ren
et al., 1996; Schackwitz et al., 1996). Downstream, serial Insulin/IGF-like growth factor receptor (DAF-2, mutated to Daf-c;
(Kimura et al., 1997) and nuclear hormone receptor (DAF-12/NHR, mutated to Daf-d; (Antebi et al., 2000) signals control and
execute tissue-specific changes in the animal (Fig. 1C, DAF-12 not shown). Mutants for each signaling axis also control
diverse developmental and metabolic outputs in addition to the dauer decision. The four-axis model of signaling control of
dauer formation neglects potential positive- and negative-feedback loops and is thus likely reductive. Still, these approaches
have provided a robust framework for further investigation into the control of the dauer developmental decision by sensory
and endocrine signaling modalities.

Genetic screens for mutations that suppress the Daf-c phenotypes conferred by mutations in the DAF-7/TGF-beta signaling
cascade identified expected proteins that confer Daf-d phenotypes when mutated (Inoue and Thomas, 2000). Mutants for
transcription factors downstream in the TGF-beta signal, DAF-3/co-Smad and DAF-5/Sno-ski (da Graca et al., 2004;
Patterson et al., 1997; Tewari et al., 2004), completely suppress Daf-c mutations in the TGF-beta signal. The DAF-16/FoxO
transcription factor, downstream of DAF-2/InsR, confers a partial dauer phenotype in double mutant combinations with Daf-c
components of TGF-beta signaling (Lin et al., 1997; Ogg et al., 1997). And mutations in DAF-12/NHR, thought to be the
most downstream player in the dauer regulatory network, completely suppress mutations in the TGF-beta group that confer a
Daf-c phenotype.

Yet this screen also identified mutations – suppressors of constitutive dauer (Scd) – that partially but not completely
suppressed the Daf-c phenotype of mutant TGF-beta group genes. These mutations defined three novel genes: scd-1, scd-2 and
scd-3 (Inoue and Thomas, 2000). One of these, scd-2, encodes a protein orthologous to Anaplastic Lymphoma Kinase (ALK),
a receptor tyrosine kinase that in humans is a proto-oncogene (Reiner et al., 2008). SCD-2/ALK and its putative growth factor
ligand HEN-1/Jeb also regulate diverse sensory signals (Ishihara et al., 2002; Kitazono et al., 2017; Shinkai et al., 2011; Wolfe
et al., 2019). Mutations in scd-2 at 25˚C strongly but not completely suppressed the DAF-c phenotype of mutant DAF-8/R-
Smad, moderately suppressed the Daf-c phenotype of mutant DAF-7/TGF-beta, weakly but consistently suppressed the Daf-c
phenotype of mutant DAF-11/rGC, and failed to suppress the Daf-c phenotype of mutant DAF-2/InsR. Through screening to
test whether mutations in candidate genes conferred Scd interactions similar to those of mutant SCD-2/ALK, its putative
ligand HEN-1/Jeb, adaptor protein SOC-1/DOS/GAB, and ERK5/MAP Kinase SMA-5 were also identified as conferring
similar Scd phenotypes. This model was further supported by showing that expression from a transgenic promoter::GFP fusion
repressed by DAF-3/Co-Smad (Thatcher et al., 1999) was regulated by mutations in the putative SCD-2/ALK signaling
cascade. Taken together, these results suggested that SCD-2/ALK and functionally related genes that confer a similar Scd
phenotype when mutated collaborate with the main DAF-7/TGF-beta cascade to co-regulate dauer-regulating genes
throughout the animal (Reiner et al., 2008).

A fourth Scd gene, scd-4, was defined by a single allele, sa321, which mapped to chromosome V and thus may have been
allelic with scd-2 or soc-1. We previously mapped the phenotype of suppression of daf-7 phenotype of sa321 to the unc-62–
dpy-11 interval on chromosome V, excluding the possibility that sa321 was an allele of scd-2, which is located to the right of
dpy-11. sa321 also complemented the suppression phenotypes of soc-1(n1789) and scd-2(y386), suggesting that sa321 defined
a novel Scd gene, scd-4 (Reiner et al., 2008). sa321 does not alter other phenotypes on plates conferred by mutations in TGF-
beta like daf-7(e1372): egg-laying defective (Egl), clumping on the plate (Cpy), and dark intestine (Din; not shown; Thomas et
al., 1993).

We sequenced the whole genome of the strain JT7478 daf-8(sa234); scd-4(sa321). In the genetic interval of unc-62–dpy-11,
we identified non-synonymous mutations in three genes: a G245E mutation in mlk-1, an A189G mutation in ncx-2, and an
I5498V mutation in ttn-1. Of these, MLK-1, a MAP3 Kinase most similar to human MLK3 (mixed lineage kinase) and
Drosophila slipper (slpr) functions in signal transduction and was a parsimonious candidate for a Scd gene based on our
knowledge of SCD-2 as a receptor tyrosine kinase. With Sanger sequencing we confirmed the DNA lesion in mlk-1 of G734A,
resulting in the G245E amino acid change in the Ser/Thr kinase domain of MLK-1 (Fig. 1A, B).

To validate that scd-4 is actually mlk-1, we used a deletion allele in mlk-1, km19 (Mizuno et al., 2004). As with mutations in
hen-1 and scd-2, sa321 and km19 mutant animals are superficially wild-type when grown on plates. Like sa321 and mutations
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in scd-2, at 25˚C km19 causes strong but not complete suppression of mutant daf-8, moderate suppression of mutant daf-7,
very weak suppression of mutant daf-11, and no suppression of mutant daf-2 (see above; Fig. 1C). Also like scd-2(y386), mlk-
1(km19) restored GFP expression from the cuIs2 reporter repressed by daf-7(e1372) (Fig. 1E, quantified in 1F). Furthermore,
as observed with certain mutated components of the putative SCD-2/ALK cascade, sa321 and km19 do not alter the Egl, Cpy
and Din phenotypes of daf-7(e1372), suggesting that the interaction between MLK-1 and DAF-7/TGF-beta signaling is
specific to dauer formation. Thus, we conclude that scd-4(sa321) is an allele of mlk-1. Given their shared mutant phenotypes
and identity as signaling molecules, we hypothesize that MLK-1/MAP3K functions downstream of SCD-2/ALK to regulate
dauer formation in conjunction with TGF-beta (Fig. 1D), but not other TGF-beta-dependent phenotypes.

Methods
Request a detailed protocol

Animal assays

Animals were grown under standard growth conditions at 15˚C or 25˚ for growth or dauer assays, respectively. Percentage
dauer formation was determined from synchronized broods grown at 25˚C laid by parents grown at 15˚C. All assays to be
compared were grown in parallel. Response of pharyngeal GFP levels expressed from the cuIs5[Pmyo-2-C-subelement::gfp] to
mutational state was as described (Reiner et al., 2008) except for image capture and quantification (see below). These animals
were all grown at 15˚C.

Microscopy

Reporter fluorescence was recorded on a Nikon eclipse Ni epifluorescence microscope with DS-Fi2 camera (Nikon) and NIS
Elements Advanced research, version 4.40 (Nikon). Images were captured at the same settings and a uniform exposure time of
60 msec with the 40x objective.

Whole genome sequencing

The strain JT7478 daf-8(sa234); scd-4(sa321) was subjected to whole-genome sequencing (50-bp single-end reads, 20-fold
genome coverage). Candidate mutations (homozygous, nonsynonymous variants) were identified using a previously described
pipeline (Smith and Yun, 2017) and annotated using ANNOVAR (Yang and Wang, 2015).

Reagents
Animal strains used

CB1383 daf-8(e1383) I

DV3650 daf-8(e1383) I; mlk-1(km19) V

CB1372 daf-7(e1272) I

DV3664 daf-7(e1272) I; mlk-1(km19) V

MT4304 daf-11(m47) V

DV3779 mlk-1(km19) daf-11(m47) V

TY1614 unc-62(e644) dpy-11(e224) V

DV3659 unc-62(e644) dpy-11(e224) daf-11(m47) V

CB1370 daf-2(e1370) III

DV3773 daf-2(e1370) III; mlk-1(km19) V

OK43 cuIs5[Pmyo-2-C-subelement::gfp] I

TY3862 cuIs5[Pmyo-2-C-subelement::gfp] I; daf-7(e1372) III

TY3883 cuIs5[Pmyo-2-C-subelement::gfp] I; daf-7(e1372) III; scd-2(y386) V

DV3855 cuIs5[Pmyo-2-C-subelement::gfp] I; daf-7(e1372) III; mlk-1(km19) V
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mapping to near dpy-11 on chromosome V.

 

6/15/2021 - Open Access

https://en.bio-protocol.org/cjrap.aspx?eid=10.17912/micropub.biology.000405


 

References
Antebi A, Yeh WH, Tait D, Hedgecock EM, Riddle DL. 2000. daf-12 encodes a nuclear receptor that regulates the dauer
diapause and developmental age in C. elegans. Genes Dev 14: 1512-27. PMID: 10859169.

Birnby DA, Link EM, Vowels JJ, Tian H, Colacurcio PL, Thomas JH. 2000. A transmembrane guanylyl cyclase (DAF-11) and
Hsp90 (DAF-21) regulate a common set of chemosensory behaviors in caenorhabditis elegans. Genetics 155: 85-104. PMID:
10790386.

da Graca LS, Zimmerman KK, Mitchell MC, Kozhan-Gorodetska M, Sekiewicz K, Morales Y, Patterson GI. 2004. DAF-5 is a
Ski oncoprotein homolog that functions in a neuronal TGF beta pathway to regulate C. elegans dauer development.
Development 131: 435-46. PMID: 14681186.

Gottlieb S, Ruvkun G. 1994. daf-2, daf-16 and daf-23: genetically interacting genes controlling Dauer formation in
Caenorhabditis elegans. Genetics 137: 107-20. PMID: 8056303.

Hu PJ. 2007. Dauer. WormBook 8: 1-19. PMID: 17988074.

Inoue T, Thomas JH. 2000. Suppressors of transforming growth factor-beta pathway mutants in the Caenorhabditis elegans
dauer formation pathway. Genetics 156: 1035-46. PMID: 11063683.

Ishihara T, Iino Y, Mohri A, Mori I, Gengyo-Ando K, Mitani S, Katsura I. 2002. HEN-1, a secretory protein with an LDL
receptor motif, regulates sensory integration and learning in Caenorhabditis elegans. Cell 109: 639-49. PMID: 12062106.

Kimura KD, Tissenbaum HA, Liu Y, Ruvkun G. 1997. daf-2, an insulin receptor-like gene that regulates longevity and
diapause in Caenorhabditis elegans. Science 277: 942-6. PMID: 9252323.

Kitazono T, Hara-Kuge S, Matsuda O, Inoue A, Fujiwara M, Ishihara T. 2017. Multiple Signaling Pathways Coordinately
Regulate Forgetting of Olfactory Adaptation through Control of Sensory Responses in Caenorhabditis elegans. J Neurosci 37:
10240-10251. PMID: 28924007.

Lin K, Dorman JB, Rodan A, Kenyon C. 1997. daf-16: An HNF-3/forkhead family member that can function to double the
life-span of Caenorhabditis elegans. Science 278: 1319-22. PMID: 9360933.

Mizuno T, Hisamoto N, Terada T, Kondo T, Adachi M, Nishida E, Kim DH, Ausubel FM, Matsumoto K. 2004. The
Caenorhabditis elegans MAPK phosphatase VHP-1 mediates a novel JNK-like signaling pathway in stress response. EMBO J
23: 2226-34. PMID: 15116070.

Ogg S, Paradis S, Gottlieb S, Patterson GI, Lee L, Tissenbaum HA, Ruvkun G. 1997. The Fork head transcription factor DAF-
16 transduces insulin-like metabolic and longevity signals in C. elegans. Nature 389: 994-9. PMID: 9353126.

Patterson GI, Koweek A, Wong A, Liu Y, Ruvkun G. 1997. The DAF-3 Smad protein antagonizes TGF-beta-related receptor
signaling in the Caenorhabditis elegans dauer pathway. Genes Dev 11: 2679-90. PMID: 9334330.

Reiner DJ, Ailion M, Thomas JH, Meyer BJ. 2008. C. elegans anaplastic lymphoma kinase ortholog SCD-2 controls dauer
formation by modulating TGF-beta signaling. Curr Biol 18: 1101-9. PMID: 18674914.

Ren P, Lim CS, Johnsen R, Albert PS, Pilgrim D, Riddle DL. 1996. Control of C. elegans larval development by neuronal
expression of a TGF-beta homolog. Science 274: 1389-91. PMID: 8910282.

Schackwitz WS, Inoue T, Thomas JH. 1996. Chemosensory neurons function in parallel to mediate a pheromone response in
C. elegans. Neuron 17: 719-28. PMID: 8893028.

Shinkai Y, Yamamoto Y, Fujiwara M, Tabata T, Murayama T, Hirotsu T, Ikeda DD, Tsunozaki M, Iino Y, Bargmann CI,
Katsura I, Ishihara T. 2011. Behavioral choice between conflicting alternatives is regulated by a receptor guanylyl cyclase,
GCY-28, and a receptor tyrosine kinase, SCD-2, in AIA interneurons of Caenorhabditis elegans. J Neurosci 31: 3007-15.
PMID: 21414922.

Smith HE, Yun S. 2017. Evaluating alignment and variant-calling software for mutation identification in C. elegans by whole-
genome sequencing. PLoS One 12: e0174446. PMID: 28333980.

Tewari M, Hu PJ, Ahn JS, Ayivi-Guedehoussou N, Vidalain PO, Li S, Milstein S, Armstrong CM, Boxem M, Butler MD,
Busiguina S, Rual JF, Ibarrola N, Chaklos ST, Bertin N, Vaglio P, Edgley ML, King KV, Albert PS, Vandenhaute J, Pandey A,
Riddle DL, Ruvkun G, Vidal M. 2004. Systematic interactome mapping and genetic perturbation analysis of a C. elegans
TGF-beta signaling network. Mol Cell 13: 469-82. PMID: 14992718.

 

6/15/2021 - Open Access



 

Thatcher JD, Haun C, Okkema PG. 1999. The DAF-3 Smad binds DNA and represses gene expression in the Caenorhabditis
elegans pharynx. Development 126: 97-107. PMID: 9834189.

Thomas JH, Birnby DA, Vowels JJ. 1993. Evidence for parallel processing of sensory information controlling dauer formation
in Caenorhabditis elegans. Genetics 134: 1105-17. PMID: 8375650.

Wolfe GS, Tong VW, Povse E, Merritt DM, Stegeman GW, Flibotte S, van der Kooy D. 2019. A Receptor Tyrosine Kinase
Plays Separate Roles in Sensory Integration and Associative Learning in C. elegans. eNeuro 6: 4. PMID: 31371455.

Yang H, Wang K. 2015. Genomic variant annotation and prioritization with ANNOVAR and wANNOVAR. Nat Protoc 10:
1556-66. PMID: 26379229.

 

Funding: N.R.R. and D.J.R. were funded by NIH grant R01GM121625 to D.J.R.

Author Contributions: Neal R Rasmussen: Writing - review and editing, Investigation, Formal analysis. Harold E Smith:
Investigation, Data curation, Writing - review and editing. David J Reiner: Conceptualization, Funding acquisition, Data
curation, Investigation, Methodology, Project administration, Supervision, Writing - original draft, Writing - review and
editing, Formal analysis.

Reviewed By: Anonymous

History: Received May 1, 2021  Revision received May 31, 2021  Accepted June 2, 2021  Published June 15, 2021

Copyright: © 2021 by the authors. This is an open-access article distributed under the terms of the Creative Commons
Attribution 4.0 International (CC BY 4.0) License, which permits unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are credited.

Citation: Rasmussen, NR; Smith, HE; Reiner, DJ (2021). The MLK-1/SCD-4 Mixed Lineage Kinase/MAP3K functions to
promote dauer formation upstream of DAF-2/InsR. microPublication Biology.
https://doi.org/10.17912/micropub.biology.000405

 

6/15/2021 - Open Access


