Drosophila yakuba – Tsc1

Bailey Lose1, Abigail Myers1, Savannah Fondse2, Ian Alberts3, Joyce Stamm3, James J. Youngblom2, Chinmay P. Rele1§ and Laura K. Reed1
1The University of Alabama, Tuscaloosa, AL USA
2California State University Stanislaus, Turlock, CA USA
3University of Evansville, Evansville, IN USA
§To whom correspondence should be addressed: cprele@ua.edu

Abstract

Gene Model for the ortholog of Tsc1 in the Drosophila yakuba DyakCAF1 assembly (GCA_000005975.1).

Figure 1: (A) Synteny between D. melanogaster and D. yakuba in the genomic neighborhood around our focal gene, Tsc1: the thin arrows at the back indicate the strand in each species, whereas the thick arrows with the gene names in them indicate direction relative to Tsc1. The top line of text in the D. yakuba gene arrows indicates the locus identifiers specific to D. yakuba.
genes while the bottom line of text indicates the orthologous gene in *D. melanogaster*; (B) Gene Model in Apollo: A screenshot of the Apollo instance housing the gene model, containing student annotations, *D. mel* Proteins, NCBI RefSeq Genes, TransDecoder Transcripts, RNA-Seq tracks (Yang et al., 2018; SRP006203) and splice junctions, exon reading frames are indicated in blue, green, and red as in legend; (C) Dot Plot of gene in *D. melanogaster* (x-axis) vs. the gene in *D. yakuba* (y-axis), the numbers on the bottom and left correspond to amino acid position, and the numbers on the top and right correspond to exon number, the vertical and horizontal stripes of color highlight the exon corresponding to each number, the purple boxes represent a lack of sequence similarity in the protein sequences within coding exons three and six; (D) An image of exon three in the gene model from the GEP mirror of the UCSC Genome Browser for *D. yakuba*. The Conservation Track of 28 Drosophila species compared to exon three in *D. melanogaster* Tsc1-RA contains regions lacking sequence similarity (vertical red box; *D. yakuba* is highlighted in the horizontal red box). The gray scale at the top of the image represents the three reading frames, where Tsc1-RA is in reading frame +2 of Drosophila melanogaster. In the grayscale, the red boxes are stop codons and the green represent start codons. The maroon, green, and purple/pink tracks above the species alignments represent the ROAST alignments and conservation (28 Drosophila species), PhastCons Scores Based on Four-fold Degenerate Sites, and PhyloP Scores Based on Four-fold Degenerate Sites, respectively. For the Drosophila conservation track for 28 Drosophila species at the bottom of the figure, darker values to indicate higher levels of overall conservation as scored by phastCons.

Description

Introduction

Tsc1 (LOC6538776) in *D. yakuba* is an ortholog to the Tsc1 gene in *D. melanogaster*. We used the *D. yakuba* CAF1 assembly (GCA_000005975.1, Drosophila 12 Genomes Consortium et al., 2007) and the *D. melanogaster* dm6 assembly (GCA_00001215.4, Release 6.32 FB2021_01). Mutations in either the Tsc1 or Tsc2 gene can cause the hamartoma syndrome tuberous sclerosis complex (TSC) (Dabora et al., 2008). These two genes operate together in the insulin signaling pathway as tumor suppressors because of their ability to control cell growth (Gao, 1970). A mutation in the Tsc1 gene can also cause benign tumors to form in multiple organs (Potter, Huang, Xu, 2001). The NCBI RefSeq predicted model in *D. yakuba*, with a RefSeq accession number of XM_002099254.2 (RefSeq Release 204), has the same number of exons as the Tsc1 gene (LOC6538776) in *D. melanogaster* indicating they have an orthologous relationship. The methods and dataset versions used to establish the gene model are described in Rele et al. (2021). The GEP maintains a mirror of the UCSC Genome Browser (Kent WJ et al., 2002; Gonzalez et al., 2020), which is available at https://gander.wustl.edu and contains additional information about data sources and versions.

Synteny

The Tsc1 gene, located on chromosome 3R in *D. melanogaster*, is neighboring the genes *Root*, *GatB*, *Sec10*, and *Ncp2f*. The best candidate for the Tsc1 ortholog gene in *D. yakuba* based on the tblastn search is found on chromosome 3R. The candidate is also surrounded by the genes LOC6538778, LOC6538777, LOC6538775, and LOC6538774 (which are likely orthologous to *Root*, *GatB*, *Sec10*, and *Ncp2f* in *D. melanogaster* respectively, Figure 1A). We performed a blastp search of protein sequence XP_002099290.1 in *D. yakuba* against the protein sequences found in the refseq_protein database for *D. melanogaster* and it showed a high percent identity to Tsc1 in comparison to the second-best hit. After confirming that the genes surrounding Tsc1 are orthologous between the two species and the blastp results indicated a high percent identity for the Tsc1 gene between the two species, we determined that this region contains the ortholog for Tsc1 in *D. yakuba*.

Gene Model

Tsc1 has one isoform in *D. yakuba*, Tsc1-PA, with six exons. There are also six exons in the Tsc1 gene located in *D. melanogaster*. A blastp search of the protein sequence of Tsc1 in *D. yakuba* against *D. melanogaster* yields only one significant match with a 97.00% identity with only 33 amino acids differing out of 770. There was a small lack of sequence similarity between the protein sequences of the two species in coding exons three and six as is displayed by the purple boxes in the dot plot (Figure 1C). The large lack of sequence similarity in exon six, shown by the red vertical box in Figure 1D, can also be seen in the conservation tracks of 28 different Drosophila species in the UCSC Genome Browser. The lack of sequence similarity in exon six is consistent with the lack of a functionally-characterized protein domain in that region of the gene (FB2021_04, released August 17, 2021). The coordinates of the curated gene models can be found in NCBI at GenBank/BankIt using the accession BK014573. These data are also available in Extended Data files below, which are archived in CaltechData.

Acknowledgments: We would like to thank Wilson Leung, who created and maintains the GEP technological infrastructure. We would also like to thank Rachael A. Cowan for helping us submit the microPublication. This publication is dedicated to the memory of Dr. James J. Youngblom.

Extended Data

References

Funding: This material is based upon work supported by the National Science Foundation under Grant No. IUSE-1915544 to LKR and the National Institute of General Medical Sciences of the National Institutes of Health Award R25GM130517 to LKR. The Genomics Education Partnership is fully financed by Federal moneys. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author Contributions: Bailey Lose: Formal analysis, Writing - original draft. Abigail Myers: Formal analysis, Writing - original draft. Savanah Fondse: Formal analysis, Writing - original draft. Ian Alberts: Formal analysis, Writing - original draft. Joyce Stamm: Writing - review and editing, Supervision. James J. Youngblom: Writing - review and editing, Supervision. Chinmay P. Rele: Formal analysis, Data curation, Supervision, Writing - review and editing, Methodology. Laura K. Reed: Supervision, Writing - review and editing, Funding acquisition.

Reviewed By: Anonymous

History: Received February 19, 2021 Revision received September 15, 2021 Accepted September 16, 2021 Published November 12, 2021

Copyright: © 2021 by the authors. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International (CC BY 4.0) License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Citation: Lose, B; Myers, A; Fondse, S; Alberts, I; Stamm, J; Youngblom, JJ; Rele, CP; Reed, LK (2021). *Drosophila yakuba* – Tsc1. microPublication Biology. https://doi.org/10.17912/micropub.biology.000474