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Abstract
Gastrulation involves coordinated movements of cells, facilitating mesoderm and endoderm internalization and proper
patterning of tissues across the germ layers. In Xenopus laevis, head mesoderm migrates collectively along the blastocoel roof
fibronectin network towards the animal pole. Meanwhile, the trunk mesodermal cells migrate over each other in convergent
thickening and convergent extension movements elongating the body axis. The behaviors of cells in these regions are
investigated mainly in tissue explants taken from the respective head or trunk mesodermal regions. How cells behave at the
transitional zone between these territories is not described in detail. To learn about cell behaviors around this junction, we
imaged cell movements in an explant that encompassed the head and trunk mesoderm. We observed that head mesoderm
migration on fibronectin employed lamellipodial protrusions at the leading edge and dynamic actin remodeling in the trailing
cells. Trunk mesodermal cells underwent mediolateral cell elongation and intercalation to form the notochord. Lateral edges of
the notochord were defined before the anterior edge. Our movie reveals distinct mesodermal cell behaviors occurring
simultaneously in different regions of gastrulating embryos. This study highlights the power of applying modern microscopy
tools to revisit classical experiments, permitting a greater understanding of the cellular dynamics that shape the embryo.
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Figure 1. Time-lapse microscopy of head mesoderm migration and notochord segregation and intercalation in Xenopus
explant: A) Diagram of the embryonic region used in this experiment and a summary of observed cell behaviors. Early
Xenopus laevis embryos were injected with mRNAs encoding LifeAct-GFP and histone H2B-RFP. Dorsal tissues in the
anterior region of the post-involuted mesoderm from mid-gastrula embryos (dotted box) were taken for time-lapse microscopy
for a total of 8 hours with frame intervals of 4 minutes. Head mesoderm cells exhibited F-actin polarization at the leading edge
of the migration front, forming distinctive lamellipodia (top panel). The notochord formed from the trunk mesoderm, first
forming lateral borders defined by high intensity F-actin signals, while the anterior border formed later (bottom panel). Cells
within the notochord elongated and underwent convergent extension to straighten and extend the notochord. B-I) Selected
maximum intensity projections from the movie are shown. The anterior-posterior axis is diagonal from the upper right to the
lower left. The starting frame at 0 minutes (min) is shown in panel B, and subsequently every 17th frame is shown in panels C
to I. The grey and magenta pseudocolor are the F-actin (LifeAct-GFP) and cell nuclei (H2B-RFP) signals, respectively. The
green asterisks in panels B and C indicate the endodermal cells that are pushed out of the focal plane by the advancing
mesodermal cells. The yellow and the orange arrowheads point to the lateral (panels D to I) and the anterior (panels F to I)
notochordal boundaries, respectively. The blue arrows in panels D to F point to the lamellipodia in the leading-edge migrating
head mesodermal cells. The blue arrowheads in panels F and G point to some examples of dynamic F-actin in protrusions in
the trailing head mesodermal cells. The red asterisks in panels D to I highlight two cells that moved from their initial positions
within the notochordal boundaries into the adjacent somatic region. The yellow asterisks in panels F and G indicate examples
of new nuclei that appeared between migrating head mesodermal cells.

Description
To visualize actin dynamics, cell shape changes, and cell movements during Xenopus laevis gastrulation, we injected mRNAs
encoding LifeAct-GFP (Shindo et al., 2019) and histone H2B-RFP (Butler and Wallingford, 2018) into early Xenopus
embryos. At the mid-gastrula stages, we dissected the dorsal tissues around the anterior region of the post-involuted bottle
cells (Fig. 1A). We then placed the explants with the endodermal side down on fibronectin-coated glass-bottom dishes. Time-
lapse microscopy was performed on an inverted confocal microscope. We captured the movements of the head and trunk
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mesodermal cells, visualizing distinct behaviors in the two regions (Fig. 1A). Below, we describe in more detail a movie that
documented head mesoderm migration and notochord segregation in these regions. Cell movements were recorded in an
explant for 8 hours with a capture interval of 4 minutes (Extended Data Movie 1).

We observed prominent migration and dynamic actin reorganization of the head mesodermal cells. The polygonal endodermal
cells, defined by stable F-actin signal at cell-cell junctions (Fig. 1B and C, green asterisks), were pushed out of the focal plane
by a cohesive group of cells exhibiting less-defined junctional F-actin but more active protrusions (t = 0-140 min in Extended
Data Movie 1 and Fig. 1B and C). The cells in the anterior region actively spread outwards, displaying a concentrated F-actin
signal at the leading edge where we observed dynamic lamellipodia (t= 148-232 min in Extended Data Movie 1; blue arrows
in Fig. 1D to F). We also detected F-actin clusters and protrusions in the trailing migratory cells, demonstrating that these cells
undergo active actin remodeling, potentially assisting with migration (Fig. 1F and G, blue arrowheads). However, we did not
identify significant polarity of F-actin in the trailing cells.

The F-actin behaviors we captured reveal novel insights into head mesoderm migration. Previous work in fixed samples and
whole tissue explants have implicated both leading and trailing cells in assisting with collective cell migration (Damm and
Winklbauer, 2011; Nagel et al., 2021; Winklbauer and Nagel, 1991). While our movie demonstrates that leading cells extend
protrusions that may drive collective cell migration, we did not observe F-actin polarization in trailing cells. A lack of F-actin
polarization in trailing cells suggests that head mesoderm migration does not require directional cues secreted from the
blastocoel roof, which is absent in our explant. Blastocoel roof-secreted directional cues were required however for the
persistent spreading of mesodermal cells, as the cells seemed to retract by the end of the 8-hour time-lapse movie. Mesodermal
cell retraction suggests that endogenous signals, such as those from the chemoattractants PDGF (platelet-derived growth
factor) and SDF-1 (stromal cell-derived factor 1), may be required to maintain persistent migration of the head mesoderm
(Ataliotis et al., 1995; Damm and Winklbauer, 2011; Fukui et al., 2007; Nagel et al., 2004; Symes and Mercola, 1996). These
are hypotheses that can be explored in future experiments.

We observed migration events that may elucidate the mechanism of head mesoderm thinning. The head mesoderm rapidly
flattens through PDGF-dependent radial intercalation (Damm and Winklbauer, 2011). Previous data have shown that
mesodermal cells deep within the embryo radially intercalate with more superficial head mesodermal cells, potentially driving
thinning (Winklbauer and Nagel, 1991). However, F-actin dynamics of these cells have not been reported. We observed new
cell nuclei between head mesoderm migratory cells, capturing their F-actin dynamics (Fig. 1F and G, yellow asterisks). These
cells may correspond to the aforementioned deep mesodermal cells that drive head mesoderm thinning. Our dataset, in
combination with future experiments in similar explants, could assess the role of F-actin polarization in head mesoderm
thinning.

In contrast to the head mesoderm, we observed notochord morphogenesis through border formation and cell intercalation in
the trunk region. We identified the notochordal boundary through a concentrated F-actin signal that segregated the notochord
from surrounding cells. Enhanced F-actin intensity delineating tissue borders became discernable at 80 minutes and apparent
at 160 minutes into imaging (Extended Data Movie 1 and Fig. 1B to H, yellow arrowheads). While the lateral notochord
boundary formed first, cells continued to be added into the anterior notochord until about 280 minutes into imaging (Extended
Data Movie 1). The notochord formed a distinctive anterior boundary 288 minutes into imaging, identifiable by continuous,
high-intensity F-actin signal (Extended Data Movie 1 and Fig. 1F to H, orange arrowheads). These observations are consistent
with previous work demonstrating that the lateral notochord boundary is defined prior to the anterior border (Youn et al.,
1980). Some cells within the nascent notochord were expelled despite these apparent boundaries, relocating to paraxial
positions adjacent to the definitive notochord (red asterisks for two such cells in Fig. 1D to 1I). Expulsion of notochord
mesodermal cells has been described previously (Reintsch et al., 2005; Shih and Keller, 1992). Initially, the cells that remained
within the lateral boundaries of the notochord formed a column 3 to 5 cells wide. These cells underwent mediolateral
elongation, during which the anterior (A) and posterior (P) cell contacts expanded while mediolateral cell contacts were
reduced. Mediolateral elongation resulted in the notochord cells intercalating among themselves, extending the presumptive
notochord without adding additional mesodermal cells (Extended Data Movie 1 and Fig. 1). Notochord cell intercalation and
elongation commenced before the appearance of the high intensity F-actin signal that delineates the anterior notochordal
border (Fig. 1F to I, orange arrowheads). The position of cell nuclei did not alter drastically during notochord mediolateral
elongation, suggesting that intercalation was mediated mainly by cell shape changes rather than cell crawling and translocation
(Extended Data Movie 1). The notochord narrowed and straightened as intercalation proceeded, especially in the posterior
region (Extended Data Movie 1 and Fig. 1F to I). As the cells elongated and intercalated, the F-actin intensity at the
notochordal boundary was reduced, but the F-actin signal at the A-P cell contacts remained strong (Fig. 1I). Eventually, a stack
of elongated cells was seen spanning the notochord (Fig. 1I). The trunk mesodermal cell behaviors observed agree with those
described previously (Keller et al., 1989; Wilson and Keller, 1991; Wilson et al., 1989) and are regulated by Wnt/planar cell
polarity signaling (Moon et al., 1993; Wallingford et al., 2000).
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Our movie reveals distinct behaviors in migrating head and intercalating trunk mesodermal cells in the same explant. For both
regions, we detected very few cell divisions during morphogenesis but observed distinctive F-actin dynamics (Extended Data
Movie 1). While some cell and cytoskeleton behaviors have been reported previously using different types of explants or fixed
and sectioned embryos (Fagotto et al., 2013; Keller et al., 1989; Shih and Keller, 1992; Winklbauer and Selchow, 1992), this is
the first study to our knowledge that examines F-actin dynamics at the head-trunk mesodermal interface in live explants. Our
live imaging contributes new insights about F-actin behaviors in migrating head mesoderm that complements previous studies
on membrane protrusive activities in these cells (Nagel et al., 2021; Winklbauer and Nagel, 1991). Our study also reveals
temporal dynamics of notochordal boundary formation that was implicated by scanning electron microscopy studies, but never
before shown in live explants (Youn et al., 1980). Explants that include both the head and trunk mesoderm can be further used
in future studies to explore how cells coordinate their behaviors during gastrulation (Hara et al., 2013). Our study
demonstrates that recapitulating classical experiments using modern techniques can not only confirm previous findings but
reveal unique perspectives into the fundamental processes that govern early embryonic development.

Methods
Request a detailed protocol

The Xenopus laevis frogs were used in accordance with the animal usage protocol 21-06A approved by the IACUC committee
at the Marine Biological Laboratory (MBL) for the Embryology course. The embryos were obtained by in vitro fertilization. A
mixture of RNAs encoding LifeAct-GFP (Shindo et al., 2019) and H2B-RFP (Butler and Wallingford, 2018) was injected at
the 100pg dose each into early embryos. The explants were dissected at mid-gastrula stage 11.5 in the DFA solution by taking
the dorsal tissues surrounding the post-involuted bottle cells marked by the distinct black line in the anterior region of the
archenteron. The explants were mounted in the DFA solution with the endodermal side facing down on a glass-bottom dish
pre-coated with 100 μg/ml fibronectin at room temperature for 30 minutes. Time-lapse microscopy was performed on Zeiss
LSM 780 laser scanning microscope using a 20x objective at 0.6x zoom with the following setup: image resolution of 512 x
512 pixels, z-stack with 0.871 μm step size for a total of 54 z-axial steps, and a time lapse with an interval of 4 minutes for a
duration of 8 hours. A selected set of the still images of maximum intensity projections are shown in Figure 1. The entire
movie is included in the appended material.

Reagents
DFA (Danilchik for Amy) solution:

49.5mM NaCl

36.5 mM gluconic acid, sodium salt

5 mM Na2CO3

4.5 mM KCl

1 mM CaCl2

1 mM MgSO4

1 x antibiotic

0.1% BSA

Adjust to pH 8.1 with HEPES

Filter sterilize.
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