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Abstract
The only representative of the MYC superfamily transcription factors in C. elegans, MML-1 (Myc and Mondo-like 1), was
shown to promote extended lifespan in a variety of models and to regulate some aspects of C. elegans development. This
previous research did not involve molecular characterization of MML-1. Here we use available mml-1 mutant alleles and other
reagents to demonstrate that MML-1 is modified by O-GlcNAc, binds to promoters of some genes directly regulated by the
DOT-1.1 histone methyltransferase complex, and has a role in promoting neuronal migration. Surprisingly, we found that the
deletion allele mml-1(ok849), which was considered a null, produces an internally truncated protein resulting from an in-frame
deletion. Localization of this truncated product to MML-1 target promoters was not impaired. The deleted region of MML-1 is
proline-rich, and its function is poorly understood in mammalian homologs of MML-1. Based on our work and previously
published data we conclude that the internal proline-rich region of MML-1 is dispensable for DNA binding but is biologically
important.
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Figure 1. Deletion of the proline-rich domain of MML-1 does not affect its DNA binding and O-GlcNAc modification:
(A) Venn diagram showing an overlap between ZFP-1 and DOT-1.1 chromatin localization peaks (ChIP-chip data, Cecere et
al. 2013) and O-GlcNAc chromatin localization peaks (ChIP-chip data, Love et al. 2010). (B) Schematic of the C. elegans
MML-1 protein: Mondo-specific domains are indicated in green, proline-rich domain is depicted as a grey oval, and the DNA
binding/dimerization domain is shown in yellow. The mutant alleles used are indicated above the protein schematic; a loss-of-
function mml-1(ok849) allele is an in-frame internal deletion, shown by grey box. The region recognized by the anti-MML-1
antibody (Pickett et al. 2007) is underlined. (C) Western immunoblotting showing anti-MML-1 antibody specificity using
mml-1 mutant alleles designated on the schematic. Asterisks indicate non-specific bands. (D) Detection of O-GlcNAc
modification of MML-1: O-GlcNAc IP followed by MML-1 western with the N-terminus-specific antibody is shown; the
truncated mml-1(ok849) product is modified. (E) MML-1 ChIP-qPCR experiment showing MML-1 enrichment at indicated
promoters (% Input) in wild type and mutant L3 larvae. Dashed lines denote ChIP background, based on ChIP with unrelated
IgG and/or MML-1 ChIP with mml-1(gk402844) null mutant extracts. Error bars denote SD of triplicate qPCR runs. Asterisks
*, ** and *** denote P values (Student’s t-test) less than 0.05, 0.01 and 0.001, respectively, mutant vs wild type or as
indicated. MML-1 ChIP-qPCR was repeated three times. (F) Hermaphrodite-specific neuron (HSN) under-migration in mml-
1(gk402844) and mml-1(ok849) mutant worms. HSNs are visualized by the Tryptophan Hydroxylase (TPH) promoter driven
GFP reporter marking serotonergic neurons. Asterisks indicate the vulva and arrows denote the HSN position. Images combine
Differential Interference Contrast (DIC) and GFP fluorescence; scale bar is 100 micrometers.
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The predominant and ubiquitously expressed C. elegans histone H3 lysine 79 methyltransferase DOT-1.1 and its interacting
partner, ZFP-1, play important roles in negatively modulating widely and highly expressed genes through promoter binding
(Cecere et al. 2013) and in creating permissive environment for expression of developmentally regulated genes through
enhancers (Esse et al. 2019; Esse and Grishok 2020). However, the mechanistic aspects of the ZFP-1/DOT-1.1 complex
function are not clear. This study was motivated by the observation that genome-wide promoter-associated ZFP-1 and DOT-
1.1 chromatin localization peaks (Mansisidor et al. 2011; Cecere et al. 2013) overlap with those of the O-GlcNAc modification
on chromatin observed in wild type C. elegans (Love et al. 2010) (Figure 1A). Notably, the identities of the O-GlcNAc-
modified proteins contributing to the O-GlcNAc ChIP-chip signals at the select promoters remain unknown. We chose to
investigate the C. elegans basic helix- loop-helix leucine-zipper (bHLH/ZIP) transcription factor MML-1 (Myc and Mondo-
like 1) (Pickett et al. 2007; Grove et al. 2009) as a candidate O-GlcNAc-modified protein, because both c-Myc (Chou et al.
1995) and the Mondo B protein (i.e., the Carbohydrate Response Element Binding Protein (ChREBP)) (Guinez et al. 2011)
carry O-GlcNAc modification. MML-1 is a 1009 amino acid protein with multiple conserved domains, including the N-
terminal Mondo Conserved Regions (I-V) (Pickett et al. 2007), which form a glucose sensing module in ChREBP (Abdul-
Wahed et al. 2017), a proline-rich region, similar to that in ChREBP (Ortega-Prieto and Postic 2019), and a C-terminal DNA-
binding and MXL-2 heterodimerization region called bHLH/ZIP (Pickett et al. 2007; Grove et al. 2009) (Figure 1B).

We obtained several viable mml-1 mutant alleles generated by the Million Mutation Project (Figure 1B, C) (Thompson et al.
2013). These included the potential null mutant mml-1(gk402844), which lacks the MML-1 protein signal recognized by the
N-terminus-specific anti-MML-1 antibody (Figure 1C) (Pickett et al. 2007) (a generous gift from Dr. Donald Ayer). Notably,
the mml-1(ok849) deletion allele (Figure 1B), which had been considered null (Johnson et al. 2014; Botts et al. 2016;
Nakamura et al. 2016), leads to an in-frame deletion and produces an internally truncated protein (Figure 1C, D). We found
that the O-GlcNAc-specific antibody RL2 immunoprecipitated both the wild type MML-1 and MML-1(ok849) (Figure 1D),
which is consistent with our hypothesis that MML-1 is O-GlcNAc-modified. Moreover, both the wild type MML-1 and the
MML-1(ok849) binding was detected at the promoters of the previously annotated ChIP targets of ZFP-1 (Mansisidor et al.
2011; Cecere et al. 2013) (Figure 1E). Notably, mml-1(gk402844) showed a background ChIP signal, whereas an increase in
ChIP signal compared to that in wild type worms has been observed in mml-1(ok849) (Figure 1E). We believe that this
increased promoter occupancy by MML-1(ok849) is due to the increased protein stability (Figure 1C, D), which suggests a
role of the deleted region in regulating MML-1 dynamics.

Our interest in MML-1 has been driven by the hypothesis that MML-1 and ZFP-1/DOT-1.1 co-regulate common target genes.
Since mml-1(ok849) phenocopied mml-1(RNAi) and behaved like a strong loss-of-function in published functional studies
(Johnson et al. 2014; Nakamura et al. 2016), we were surprised to detect the truncated product by western immunoblotting
(Figure 1C). However, the current annotation of the mml-1(ok849) allele is correct and predicts an in-frame deletion in MML-
1, which results in a 608 aa long MML-1(ok849) (~67 kDa). This predicted size is consistent with our western data (Figure
1C, D).

To gain additional evidence that mml-1(ok849) and mml-1(gk402844) (a null) shared loss-of-function phenotypes, we analyzed
Hermaphrodite-Specific Neuron (HSN) migration. The HSN under-migration phenotype is observed in zfp-1(ok554)
reduction-of-function mutant, and it is, at least in part, due to the mis-regulation of pdk-1 expression in the hypodermis
(Kennedy and Grishok 2014). Indeed, both mml-1(ok849) and mml-1(gk402844) worms displayed defects in HSN migration,
8% (n=49) and 45% (n=49), respectively (Figure 1F), analogous to those that we previously described for zfp-1(ok554) (25-
30% affected animals) (Kennedy and Grishok 2014). We note that the mml-1(ok849) mutant animals exhibited both a less
severe and a less penetrant HSN migration phenotype compared to the mml-1(gk402844) null. Interestingly, the MML-
1/MXL-2 complex has earlier been implicated in cell migration in the male tail, and it acted non-autonomously, in the
hypodermis, to promote cell migration (Pickett et al. 2007). In sum, these results suggest that MML-1/MXL-2 and ZFP-
1/DOT-1.1 may act together in regulating genes expressed in the hypodermis to non-autonomously promote cell migrations
during C. elegans development.

The MML-1 region deleted in MML-1(ok849) is proline-rich and similar to the proline-rich region in ChREBP, whose
function is poorly understood (Ortega-Prieto and Postic 2019). Our findings, together with the previous studies of lifespan
control using mml-1(ok849) and mxl-2(tm1516), which showed similar phenotypes and behaved like strong loss-of-function
mutations (Johnson et al. 2014; Nakamura et al. 2016), indicate the importance of the proline-rich domain in the biological
functions of MML-1. Thus, the existing data indicate that the MML-1(ok849) protein is less active, despite its binding to DNA
and its O-GlcNAc modification. Moreover, they suggest that a posttranslational activation step targeting the proline-rich
region of MML-1, and possibly ChREBP, is required for these DNA-binding proteins to be fully functional in transcription
regulation.

Methods
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Request a detailed protocol

Western immunoblotting

Approximately 20-25 L3 stage worms were picked directly into the loading buffer and boiled before loading. Proteins were
resolved on precast NuPAGE Novex 4–12% Bis-Tris gels (Invitrogen) and transferred to a nitrocellulose membrane (0.45 μm)
by semidry transfer (BioRad Trans-Blot SD transfer cell) at a constant current of 0.12A for 1 hour. The blotted membranes
were blocked with the blocking buffer (5% non-fat dry milk in TBS-T) at room temperature for 1 hour. Subsequently, they
were incubated with the primary antibody overnight at 4°C and with the secondary antibody for 2 hours at room temperature.
Three washes with TBS-T buffer were made between and after the incubation with the antibodies. The anti-MML-1 rabbit
antiserum raised against the 189-376 aa region was a gift from Dr. Don Ayer, University of Utah. It was used at 1:5000
dilutions.

O-GlcNAc immunoprecipitation/ MML-1 western

Synchronized populations of C. elegans were grown on agarose 15 cm Petri dishes until larval stage three at 20°C with about
100,000 worms plated per dish. Worms were washed off the plates using isotonic M9 solution and pelleted. The pellet was
resuspended in ice-cold RIPA buffer (10 mM Tris-HCl pH 8.0, 0.1% SDS, 1% Triton X-100, 0.1% sodium deoxycholate, 1
mM EDTA, 0.15 M NaCl) supplemented with Halt™ Protease Inhibitor Cocktail (Thermo Fisher Scientific) and sonicated
with 30 sec pulses 10 times using Branson microtip sonicator at 10% power in the cold room. The RIPA buffer was used to
limit co-immunoprecipitation of proteins not modified by O-GlcNAc. Protein extracts were span at 12,000 rpm at 4°C for 10
minutes. Protein concentration was quantified by the Bradford assay, and 8 μg of the anti-O-GlcNAc monoclonal antibody
(clone RL2, Abcam ab2739) was used with 2.5 mg protein extract in each immunoprecipitation reaction. After 1 hour
incubation (4°C) of the immunocomplex, 50μl of Dynabeads™ Protein G suspension (Thermo Fisher Scientific) was added,
and the mixture was incubated at 4°C for 1-3 hours on rotation. Beads were recovered with a Dynal® Magnetic Particle
Concentrator (Invitrogen). After four washes with the extraction buffer the beads were resuspended in 50μl of gel loading
buffer and incubated at 95°C for 5 minutes. Western immunoblotting with the anti-MML-1 rabbit antiserum was performed as
described above.

MML-1 ChIP/qPCR

Chromatin immunoprecipitation was performed as described in our earlier publications (Mansisidor et al. 2011; Cecere et al.
2012; Cecere et al. 2013; Gushchanskaia et al. 2019). Briefly, 2.5–3mg of the 2% paraformaldehyde cross-linked protein
extract from L3 worms was incubated for 1h at 4°C with the specific antibody and the immune complexes were then incubated
with 60 μl Dynabeads™ Protein G suspension (Thermo Fisher Scientific) for 1h at 4°C. 1 μl of the anti-MML-1 antiserum was
used in each immunoprecipitation reaction. DNA was cleaned up with the Qiagen PCR purification kit. The
immunoprecipitated DNA was quantified by qPCR using the ΔΔCt method to calculate the percentage of immunoprecipitation
relative to the input.

ChIP/chip data overlap analysis

Genomic regions representing ZFP-1 and DOT-1.1 enrichment were fetched from the modENCODE server
(http://www.modencode.org). O-GlcNac peaks were obtained from NCBI GEO (GSE18611). For identification of target genes,
C. elegans transcription unit coordinates were extracted from the UCSC genome browser (RefSeq based on WS220/ce10). A
transcription unit was called bound by ZFP-1, DOT-1.1 or O-GlcNac if its 1500 bp upstream regions overlapped with a ChIP
peak. Overlap analysis was performed in R using the package valr (Riemondy et al. 2017).

Visualization of C. elegans HSN neurons

HSN neurons were detected by using the zdIs13[tph-1::gfp] transcriptional reporter, as previously described (Kennedy and
Grishok 2014).

Reagents
C. elegans strains

Strain Name Genotype Source

N2 Wild type Bristol N2 CGC

RB954 mml-1(ok849) III CGC

RB774 zfp-1(ok554) III CGC
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AGK760 mml-1(gk402844) III. 4x outcrossed from VC20787 AGK lab

SK4013 zdIs13[tph-1p::gfp] IV CGC

AGK777 mml-1(ok849) III; zdIs13[tph-1p::gfp] IV AGK lab

AGK778 mml-1(gk402844) III; zdIs13[tph-1p::gfp] IV AGK lab

VC20787 Million Mutations Project strain, contains mml-1(gk402844) III CGC

VC40479 Million Mutations Project strain, contains mml-1(gk657881) III CGC

VC30257 Million Mutations Project strain, contains mml-1(gk449279) III CGC

Antibodies

Name Source Reference

anti-O-GlcNAc, RL2, mouse monoclonal Abcam ab2739 (Love et al. 2010)

anti-MML-1 antiserum, rabbit, raised against 189-376 aa Ayer lab (U of Utah) (Pickett et al. 2007)

Primers used in ChIP/qPCR

Name Sequence

pdk-1P (F) AAACAACACATAGACTTGTGCC

pdk-1P (R) GTACGGTTGTTATCGCTTTCAG

egl-30P3 (F) CGTGAGTTTGAGTGTCTCTG

egl-30P3 (R) GATTAGGTTGTGGCTTTCCC

zfp-1P (F) GTCGTCAATTCTATTTCTCGT

zfp-1P (R) GATAGTAGCCGAAAGGAACAG

daf-16P (F) GATTCTCCCTCTCCGTTCAC

daf-16P (R) GTGATGAAGAAGGTGGTCTC

Acknowledgments: The anti-MML-1 antiserum was a gift from Dr. Donald Ayer (University of Utah).
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