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Abstract
Yeast divides asymmetrically, with an aging mother cell and a ‘rejuvenated’ daughter cell, and serves as a model organism for
studying aging. At the same time, determining the age of yeast cells is technically challenging, requiring complex
experimental setups or genetic strategies. We developed a synthetic system composed of two interacting oligomers, which
forms condensates in living yeast cells. Here, we report that these synthetic condensates' size correlates with yeast replicative
age, making these condensates age reporters for this model organism.

Figure 1. Synthetic protein condensate size correlates with yeast replicative cell age.

a. Schematic of the synthetic condensate design. The genetic construct encoding a previously described synthetic dimeric
protein with interaction domains (Im2), with either high (wild type) or low affinity (E41A) for E9, was inserted into the
genome of MATα mating type yeast. A cassette encoding a decameric protein fused to E9 was inserted into the genome of
MATa type cells. The two resulting strains were mated and the diploid cells expressed both components forming synthetic
mesh-like assemblies. The dimeric and decameric protein components were fused to red and green fluorescent proteins,
respectively. b. The assembly into condensates is dependent on the presence of both components. Haploid yeast cells with
only one component do not exhibit visible condensates, and the fluorescence signal is homogeneously distributed across the
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cytoplasm. Expression of both components after mating generates synthetic condensates. Diploid cells expressing dimer (RFP)
together with the decamer (GFP) exhibit punctae, reflecting the formation of synthetic condensates. Components are indicated
above. Yellow highlights the overlay of the red and green fluorescence signals. Scale bar = 5 μm. c. Condensates appear
within the first cell cycle of a newborn cell. The appearance of a new budscar (cyan, white asterisks) is followed by the
appearance of a condensate (green, white arrow) within 90 min. A timelapse series of growing cells expressing the synthetic
condensates, co- stained for budscars is shown. Growing cells expressing the high-affinity dimer (not imaged) together with
the decamer (GFP) were imaged in the presence of a bud scar stain. Timepoints are indicated above. Scale bar = 5 μm. d. In a
population of cells growing in log phase, the frequency of cells with a particular age is decreasing exponentially. e.
Comparison of the theoretical age distribution to the distribution of condensate size. Cells expressing the decameric
component in combination with either the high affinity (orange) or low affinity dimer (cyan) were imaged, segmented, and the
intensity within the condensate was recorded. Intensity measurements of condensates were binned to match the theoretically
sampled replicative ages in the population. Individual lines indicate independent replicates of the experiment. The number of
cells is given for each replicate, and the red line shows the theoretical frequency of cells of a particular age in the population. f.
Determination of condensate intensity and number of bud scars. Bud scar staining (cyan) of cells expressing the high
affinity dimer together with the decamer (green). Bud scars were counted manually. White asterisks highlight four bud scars
on a cell. Cells and condensates were automatically segmented, and the condensate's GFP intensity was recorded. White and
yellow lines indicate the identified cell and condensate boundaries, respectively. Scale bar = 5 μm. g. Condensate size
correlates with replicative cell age. Bud scars were related to the condensate's integrated density in the GFP channel, as a
measure of condensate size. Cells expressing the decamer with either the high-affinity dimer (orange), or the low-affinity
dimer (blue), were used. Points indicate data for individual cells, boxplots show the distributions of condensate’s integrated
densities for cells exhibiting a particular number of bud scars. The lower and upper hinges correspond to the first and third
quartiles, the middle line indicates the median. The upper and lower whiskers extend to largest and smallest values, no further
than 士1.5 * interquartile range. Solid lines show linear regressions of the integrated density of condensates versus the number
of bud scars on the cells harboring them. Shaded areas show the 95% confidence interval of the linear model. Number of cells,
adjusted R squared and p-values are indicated in the inset.

Description
We recently developed a synthetic protein based system that forms condensates in vivo (Heidenreich et al. 2020). The system
consists of two proteins that interact and condense into a round, mesh-like structure. The structures grow over time, since the
components are constitutively expressed. This hints that condensate size could be used as a molecular timer. Here, we show
that such a system indeed serves as a good proxy for yeast's replicative age.

The previously developed version of the system was designed to yield heterogeneous expression of the two components in
order to map phase diagrams. With such heterogeneous expression from plasmids, a majority of cells contain an excess of one
component and do not form any condensate. Here however, our goal is that all cells contain a reporter of their replicative age,
which requires the two components to be expressed in stoichiometric amounts. Therefore, we integrated the two constructs
into two alleles of the same locus of diploid cells. Furthermore, to decrease the stoichiometry dependence of the formation of
condensates, we increased the valency of one component from four to ten. Indeed, it was shown that increasing valency
enhances phase separation of two-component systems over a wider concentration range (Nandi et al. 2019; Banani et al. 2016).
Finally, to assess the effect of affinity on the age-reporting reliability of our system, we utilized two different affinities
between the interaction domains of the two components (Figure 1a).

As expected, condensates are only formed when both components are present, after mating two haploid strains where each
haploid carries one component (Figure 1b). Timelapses of budscar-stained cells expressing our synthetic system revealed that
condensates become detectable within the first cell-cycle of a newly born cell (Figure 1c, Movie 1).

In a dividing cell population, the frequency fA of cells of age A is fA= 1 / 2A, so that half of the population has not yet divided
(age 1), a quarter of the population is one cycle old (age 2) and so on (Figure 1d). To examine whether the condensate’s size
recapitulates such an age-distribution, we measured the condensate sizes across a large number of cells (N), binned the results
into log2(N) bins, and compared it to the theoretically expected distribution of ages. We observed that the size-distribution of
condensates in the population matched the expected distribution of ages, and the higher affinity version of the system appeared
more accurate (Figure 1e). To further validate that condensate size serves as a good proxy for cell age, we stained and
manually counted budscars of cells expressing our synthetic system, and correlated this number to the size of automatically
identified condensates (Figure 1f). The number of budscars, and therefore yeast replicative age, correlated well with
condensate size (R2=0.83 and 0.87 for the low- and high affinity versions of our system, respectively, Figure 1g). Interestingly,
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such correlation implies that these synthetic condensates are rarely passed to daughter cells, presumably due to their size
prohibiting passage through the bud neck.

The identification or isolation of old cells by micro-dissection is laborious. Alternative methods, such as microfluidic
techniques (Jo et al. 2015; Lee et al. 2012; Chen, Crane, and Kaeberlein 2017; Crane et al. 2014), the mother enrichment
program (Lindstrom and Gottschling 2009), or a magnetic-bead based enrichment of aged cells (Hendrickson et al. 2018) are
difficult to upscale for genome-wide studies. The approach presented here, where a protein’s assembly serves as a reporter for
age, could be a powerful alternative owing to the ease with which age can be inferred by this method. More generally,
synthetic assemblies in cells find unexpected applications, such as the use of synthetic protein filaments (Garcia-Seisdedos et
al. 2017) as ticker-tape recorders of intra-cellular events (Linghu et al. 2021; Lin et al. 2021). It is our hope that this system
will serve the community in novel applications.

Methods

1. Genetic constructs and strains

The components were adapted from our previously developed system (Heidenreich et al. 2020). We used the dimer fused to
FusionRed and Im2 with either wild type (1.5 ± 0.1 x 10-8M), or low affinity (E41A) for E9: 3*10-5M (Li et al. 1998), in
combination with a decameric oligomerization domain (1VPX (Joint Center for Structural Genomics (JCSG) 2004)) fused to
E9 and Venus. To generate homogeneous expression, both components were driven by the same promoter (TDH3 promoter)
and terminator (CYC terminator). The constructs were cloned into m3925 plasmids (Voth, Jiang, and Stillman 2003) that were
modified to carry G418 (decamer) or hygromycin (dimer) resistance. Finally, the constructs were inserted into the TRP1 locus
of of yeast strains of opposite mating type, where the dimer was inserted into MATα type (BY4741), and the decamer into
MATa type (BY4742) cells (Brachmann et al. 1998). The two resulting strains were mated, yielding diploid cells (BY4743)
carrying both components (Figure 1 a and b). The plasmid and strain details are listed in Table 1 (Reagents).

2. Staining, image acquisition and analysis

Cells were grown in synthetic defined (SD) media with hygromycin and G418 to logarithmic growth (OD600 0.6-0.8)
overnight. For staining budscars, cells were transferred to optical 96-well plates (GreinerTM) and WGA-CF405M (Biotium)
was added to a final concentration of 50 μg/ml 20-30 min prior to imaging. Images were acquired using an Olympus IX83
microscope with a Yokogawa CSU-W1 spinning disc confocal scanner and an automated piezo-stage (Mad City Labs). For the
time-lapse movie of budscar stained cells (Figure 1c), seven z-stacks were acquired and maximum intensity z-projections were
generated using FIJI (Schindelin et al. 2012). For analyzing the condensate’s integrated intensity, 100 images with eight z-
stacks were acquired and an average z-projection was used (Figure 1e-h). Cells and condensates were segmented, and the
condensate’s intensity was recorded using custom scripts (Matalon et al. 2018). To correlate the condensate’s integrated
intensity to the number of budscars, cells and condensates were segmented automatically. Then, tens of cells with each number
of budscars were identified manually and the preceding segmentation was used to measure the corresponding condensate’s
integrated intensity. Data analysis and plotting was conducted using custom R scripts.

Reagents

Table 1: Plasmids and strains used and generated in this study.

Plasmids

Name Backbone
Plasmid Description Comment

pMH14
(Heidenreich
et al. 2020)

m3925 GPDpromoter-NES-Im2-4LTB-FusionRed-
CYCterminator-HygromycinR

High affinity dimer integration plasmid for
TRP1 locus

pMH16 m3925 GPD promoter- Venus-1VPX-E9-
CYCterminator-KanMX Decamer integration plasmid for TRP1 locus
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pMH18 m3925 GPDpromoter-NES-Im2(E41A)-4LTB-
FusionRed-CYCterminator-HygromycinR

Low affinity dimer integration plasmid for
TRP1 locus

Strains

Name Background
Strain Genotype Description

yMH14 BY4742
MATα his3Δ1 leu2Δ0 lys2Δ0 ura3Δ0

trp1::GPDpromoter-Venus-1VPX-E9-
CYCterminator-KanMX

MATα with decamer in TRP1 locus, KanMX
resistant

yMH15 BY4741
MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0

trp1::GPDpromoter-NES-Im2-4LTB-
FusionRed-CYCterminator-HygromycinR

MATa with high affinity dimer in TRP1 locus

yMH16 BY4741
MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0

trp1::GPDpromoter-NES-Im2(E41A)-4LTB-
FusionRed-CYCterminator-HygromycinR

MATa with low affinity dimer in TRP1 locus,
Hygromycin resistant

yMH17 BY4743

MATa/alpha; his3D1/his3D1;
leu2D0/leu2D0; met15D0/MET15;
LYS2/lys2D0; ura3D0/ura3D0

trp1/trp1::GPDpromoter-Venus-1VPX-E9-
CYCterminator-KanMX/GPDpromoter-NES-
Im2-4LTB-FusionRed-CYCterminator-
HygromycinR

MATa/α diploids with high affinity dimer and
decamer in the two TRP1 alleles, KanMX and
hygromycin resistant, generated by mating
yMH14 and yMH15

yMH18 BY4743

MATa/alpha; his3D1/his3D1;
leu2D0/leu2D0; met15D0/MET15;
LYS2/lys2D0; ura3D0/ura3D0

trp1/trp1::GPDpromoter-Venus-1VPX-E9-
CYCterminator-KanMX/GPDpromoter-NES-
Im2(E41A)-4LTB-FusionRed-
CYCterminator-HygromycinR

MATa/α diploids with low affinity dimer and
decamer in the two TRP1 alleles, KanMX and
hygromycin resistant,

Generated by mating yMH14 and yMH16
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Extended Data
Description: Movie 1: Condensates appear within the first cell cycle of a newborn cell. Resource Type: Audiovisual. File:
Movie1.mp4. DOI: 10.22002/D1.20180

References
Banani SF, Rice AM, Peeples WB, Lin Y, Jain S, Parker R, Rosen MK. 2016. Compositional Control of Phase-Separated
Cellular Bodies. Cell 166: 651-663. PubMed ID: 27374333

Brachmann CB, Davies A, Cost GJ, Caputo E, Li J, Hieter P, Boeke JD. 1998. Designer deletion strains derived from
Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other

 

6/3/2022 - Open Access

https://portal.micropublication.org/uploads/28c93c2c3f456edb63e889ff28791c3c.mp4
https://doi.org/10.22002/D1.20180
https://www.ncbi.nlm.nih.gov/pubmed/27374333


 

applications. Yeast 14: 115-32. PubMed ID: 9483801

Chen KL, Crane MM, Kaeberlein M. 2017. Microfluidic technologies for yeast replicative lifespan studies. Mech Ageing Dev
161: 262-269. PubMed ID: 27015709

Crane MM, Clark IB, Bakker E, Smith S, Swain PS. 2014. A microfluidic system for studying ageing and dynamic single-cell
responses in budding yeast. PLoS One 9: e100042. PubMed ID: 24950344

Heidenreich M, Georgeson JM, Locatelli E, Rovigatti L, Nandi SK, Steinberg A, Nadav Y, Shimoni E, Safran SA, Doye JPK,
Levy ED. 2020. Designer protein assemblies with tunable phase diagrams in living cells. Nat Chem Biol 16: 939-945. PubMed
ID: 32661377

Hendrickson DG, Soifer I, Wranik BJ, Kim G, Robles M, Gibney PA, McIsaac RS. 2018. A new experimental platform
facilitates assessment of the transcriptional and chromatin landscapes of aging yeast. Elife 7: . PubMed ID: 30334737

Joint Center for Structural Genomics (JCSG). 2004. “Crystal Structure of Transaldolase (EC 2.2.1.2) (TM0295) from
Thermotoga Maritima at 2.40 A Resolution.” Worldwide Protein Data Bank. https://doi.org/10.2210/pdb1vpx/pdb DOI:
https://doi.org/10.2210/pdb1vpx/pdb

Jo MC, Liu W, Gu L, Dang W, Qin L. 2015. High-throughput analysis of yeast replicative aging using a microfluidic system.
Proc Natl Acad Sci U S A 112: 9364-9. PubMed ID: 26170317

Lee SS, Avalos Vizcarra I, Huberts DH, Lee LP, Heinemann M. 2012. Whole lifespan microscopic observation of budding
yeast aging through a microfluidic dissection platform. Proc Natl Acad Sci U S A 109: 4916-20. PubMed ID: 22421136

Lin, Dingchang, Xiuyuan (ted) Li, Pojeong Park, Benjamin Tang, Hao Shen, Jonathan B. Grimm, Natalie Falco, David Baker,
Luke D. Lavis, and Adam E. Cohen. 2021. “Time-Tagged Ticker Tapes for Intracellular Recordings.” bioRxiv.
https://doi.org/10.1101/2021.10.13.463862. DOI: https://doi.org/10.1101/2021.10.13.463862.

Lindstrom DL, Gottschling DE. 2009. The mother enrichment program: a genetic system for facile replicative life span
analysis in Saccharomyces cerevisiae. Genetics 183: 413-22, 1SI-13SI. PubMed ID: 19652178

Linghu, Changyang, Bobae An, Monika Shpokayte, Orhan T. Celiker, Nava Shmoel, Chi Zhang, Won Min Park, Steve
Ramirez, and Edward S. Boyden. 2021. “Recording of Cellular Physiological Histories along Optically Readable Self-
Assembling Protein Chains.” bioRxiv. https://doi.org/10.1101/2021.10.13.464006. DOI:
https://doi.org/10.1101/2021.10.13.464006.

Li W, Hamill SJ, Hemmings AM, Moore GR, James R, Kleanthous C. 1998. Dual recognition and the role of specificity-
determining residues in colicin E9 DNase-immunity protein interactions. Biochemistry 37: 11771-9. PubMed ID: 9718299

Matalon, O., A. Steinberg, E. Sass, J. Hausser, and E. D. Levy. 2018. “Reprogramming Protein Abundance Fluctuations in
Single Cells by Degradation.” bioRxiv. https://doi.org/10.1101/260695. DOI: https://doi.org/10.1101/260695.

Nandi, Saroj Kumar, Meta Heidenreich, Emmanuel D. Levy, and Samuel A. Safran. 2019. “Interacting Multivalent Molecules:
Affinity and Valence Impact the Extent and Symmetry of Phase Separation.” arXiv [cond-Mat. Soft].
https://doi.org/arXiv:1910.11193v2. DOI: https://doi.org/arXiv:1910.11193v2.

Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B,
Tinevez JY, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A. 2012. Fiji: an open-source platform for biological-
image analysis. Nat Methods 9: 676-82. PubMed ID: 22743772

Voth WP, Jiang YW, Stillman DJ. 2003. New 'marker swap' plasmids for converting selectable markers on budding yeast gene
disruptions and plasmids. Yeast 20: 985-93. PubMed ID: 12898713

Garcia-Seisdedos H, Empereur-Mot C, Elad N, Levy ED. 2017. Proteins evolve on the edge of supramolecular self-assembly.
Nature 548: 244-247. PubMed ID: 28783726

Funding: E.D.L. acknowledges support by the Israel Science Foundation (no. 1452/18), by the European Research Council
under the European Union’s Horizon 2020 research and innovation program (grant agreement no. 819318), by the HFSP
Career Development Award (award no. CDA00077/2015), by a research grant from A.-M. Boucher and by research grants
from the Estelle Funk Foundation, the Estate of Fannie Sherr, the Estate of Albert Delighter, the Merle S. Cahn Foundation,
Mrs. Mildred S. Gosden, the Estate of Elizabeth Wachsman and the Arnold Bortman Family Foundation. E.D.L. is an
incumbent of the Recanati Career Development Chair of Cancer Research. L.R. acknowledges support from the European
Commission (Marie Skłodowska-Curie Fellowship, no. 702298-DELTAS)

 

6/3/2022 - Open Access

https://www.ncbi.nlm.nih.gov/pubmed/9483801
https://www.ncbi.nlm.nih.gov/pubmed/27015709
https://www.ncbi.nlm.nih.gov/pubmed/24950344
https://www.ncbi.nlm.nih.gov/pubmed/32661377
https://www.ncbi.nlm.nih.gov/pubmed/30334737
https://doi.org/https://doi.org/10.2210/pdb1vpx/pdb
https://www.ncbi.nlm.nih.gov/pubmed/26170317
https://www.ncbi.nlm.nih.gov/pubmed/22421136
https://doi.org/https://doi.org/10.1101/2021.10.13.463862.
https://www.ncbi.nlm.nih.gov/pubmed/19652178
https://doi.org/https://doi.org/10.1101/2021.10.13.464006.
https://www.ncbi.nlm.nih.gov/pubmed/9718299
https://doi.org/%20https://doi.org/10.1101/260695.
https://doi.org/%20https://doi.org/arXiv:1910.11193v2.
https://www.ncbi.nlm.nih.gov/pubmed/22743772
https://www.ncbi.nlm.nih.gov/pubmed/12898713
https://www.ncbi.nlm.nih.gov/pubmed/28783726


 

Author Contributions: Meta Heidenreich: conceptualization, data curation, formal analysis, investigation, methodology,
validation, visualization, writing - original draft, writing - review editing. Joseph M Georgeson: methodology, investigation.
Yotam Nadav: methodology, investigation. Emmanuel D Levy: conceptualization, funding acquisition, methodology,
supervision, writing - original draft, writing - review editing.

Reviewed By: Anonymous

History: Received April 1, 2022 Revision Received June 2, 2022 Accepted May 31, 2022 Published June 3, 2022

Copyright: © 2022 by the authors. This is an open-access article distributed under the terms of the Creative Commons
Attribution 4.0 International (CC BY 4.0) License, which permits unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are credited.

Citation: Heidenreich, M; Georgeson, JM; Nadav, Y; Levy, ED (2022). Synthetic condensate size correlates with yeast
replicative cell age. microPublication Biology. 10.17912/micropub.biology.000582

 

6/3/2022 - Open Access

https://doi.org/10.17912/micropub.biology.000582

