
 

Live imaging and quantification of circulating potentially metastatic
tumor cells in early pupal stage of Drosophila melanogaster
Dagem Yilma Chernet1*, Levi Klassen1*, Sonya Goertzen1, Juan Nicolas Malagon1§

1Canadian Mennonite University, 500 Shaftesbury Blvd, Winnipeg, MB, Canada R3P 2N2
§To whom correspondence should be addressed: NMalagon@cmu.ca
*These authors contributed equally.

Abstract
A circulating tumor cell (CTC) is a type of cell that is shed from solid tumors, swept away in the bloodstream or lymphatic
system, and has the potential to cause tumorigenesis at a secondary location. Here we describe an early pupal leg system to
study CTCs in vivo and to compare the CTCs described in this work to those previously studied in vitro. We quantified cellular
parameters such as the number, size, and shape of CTCs, and our findings are consistent with previous in vitro studies. Thus,
live imaging of CTCs in model organisms can complement and validate previous work in this field and can be an initial step
when deciphering how in vivo CTCs behave in humans during metastasis.
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Figure 1. Early pupal legs as a system to studying circulating tumor cells (CTCs) in vivo.
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Schematic displaying developing Drosophila melanogaster legs of two strains: wild type vs. RasV12, scrib1 (genetically
induced tumors). B) Schematic of developing leg with tumor and CTCs. Dotted line in B shows region imaged. C-F). Frames
from Movie 1 showing CTCs movement after the rupture of peripodial membrane (ARPM) during early pupal development.
In B-F, arrows indicate the direction of CTC movement. CTCs are labelled within circles of various colors. Color of legs,
wings, and CTCs in the schematic A-B are matched by how they are outlined in their respective time-lapse frames. G) CTC
size Histogram H) Comparison between CTC circularity and size. I) Schematic showing the relationship between CTC
number, size, and circularity

Description
Although they were discovered in the 19th century (Wang et al. 2017), the last 20 years have seen a renewed interest in
circulating tumor cells (CTCs). CTCs originate from a primary tumor and colonize distant tissues by moving in the
bloodstream (Castro-Giner and Aceto 2020). These cells may form clusters of three or more individual CTCs travelling
together in the bloodstream. The relevance of CTC studies comes from the ability to detect metastasis by identifying CTC and
CTC clusters in the circulatory system (Wang et al. 2017). Thus, understanding the biology of CTCs is important in
eliminating metastatic disease by preventing their departure from tumors or destroying them while still in the bloodstream.

Despite their importance, CTCs are rare in the blood (approximately 1 CTC per 109 blood cells) (Alix-Panabières and Pantel
2014), presenting an obstacle to those isolating and studying them (Pantel 2016). Due to this technical limitation, most work
thus far has concentrated on studying CTCs in vitro, isolating nucleic acids from CTCs, and using antibodies to capture CTCs
(Yu et al. 2011). While these advances have been significant, the bias towards in vitro methods has the potential to skew
analyses of CTCs towards an oversimplified understanding. The primary reasons for this are twofold. First, because the
techniques used to capture CTCs rely on them showing specific cell markers, the CTCs that do not display these markers will
therefore not be collected and analyzed, reducing the chances that these methods will collect a diverse set of cells (Kuo et al.
2019). Second, the methods which analyze CTC isolates are only able to display the properties of CTCs at a single point in
time, preventing them from capturing the nuances of how CTCs can change during the metastatic process (Kuo et al. 2019). In
addition, in vitro studies of CTCs can involve invasive techniques that can damage CTCs (Kuo et al. 2019). In contrast, in vivo
CTC models are more likely to reproduce various aspects of the CTCs’ microenvironment including the interaction of CTCs
with other cell types and tissues (Tellez-Gabriel et al. 2018). This technical bias raises the question of whether in vitro studies
can adequately account for the complexity of CTCs in vivo, and if they do not, which exact aspects of these in vitro studies
need to be improved.

The first step to answering this question is to develop in vivo systems that allow for visualizing, tracking, and reliably
quantifying CTCs (Kuo et al. 2019). Although Drosophila melanogaster has an open circulatory system and cannot precisely
mimic metastasis, this model organism has been used extensively to study tumor dissemination, colonization, and metastatic
growth (Campbell et al. 2019). Here, we show that developing pupal legs in Drosophila are an excellent system to investigate
the properties of CTCs in vivo. We genetically induced tumors and then performed live imaging through the pupal case, which
allowed us to study CTCs without the concern of isolating, enriching, or damaging them (Kuo et al. 2019). In addition,
although CTCs are moving along with other types of cells (e.g., immune and epithelial cells), the frequency of CTCs is much
higher than in the human blood (Approximately 1 CTC per 1 other type of cell). Similar to many in vitro studies (Zhou et al.
2019), we used the image processing software ImageJ to quantify CTC cellular parameters and found several common
patterns between our work in fruit flies and studies in human CTCs.

To find a Drosophila system to study CTCs, we imaged different pupal stages as well as various developing epithelia including
legs, wings, mouthparts, and eyes, among others. Although we found that several epithelial systems display cell dynamics that
resemble CTC formations, the presence of CTCs is infrequent and only a few CTCs can be observed. In contrast, we found
that early pupal legs and wings always show the presence of CTCs at variable frequency. We imaged the following strains:
normal (wt and heterozygous unflipped tissue), as well as invasive tumors (RasV12; M6-/-) (Dunn et al. 2018) and (RasV12;
scrib1) (Wu et al. 2010). We observed that after the rupture of the peripodial membrane and before the head eversion, the fly
strains with invasive tumor genotypes always display a presence of CTCs. In contrast, the normal strains rarely show
circulating pieces of normal tissue. For this work, we are going to concentrate on RasV12scrib1 as this genetic combination has
been studied in more detail.

Analysis of CTCs in three time-lapse movies quantified three cellular parameters: quantity of CTCs, size (measured using 2-
dimensional surface area), and shape (measured using circularity). To do so, we genetically induced tumors in the larval stage
and studied CTCs in the developing pupal legs. We consistently obtained GFP-labelled tumors located in the developing legs,
as well as many GFP-labelled individual and groups of cells moving around them, which resemble CTCs observed in previous
studies (Aceto et al. 2014). We found the same scenario in all pupae observed (>20 pupae), but we analyzed three movies for
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this study (Fig 1A-F). Then, we used the application “analyze particles” from the software ImageJ to compare how similar
these CTCs are to those described in patients and cancer lines. In this work, we concentrated on general cellular patterns CTC,
so we did not study the dynamics of each CTC over time. As a result, some of the data points belong to the same CTCs at
different time points (explained in more detail in the methodology section). From these data, we observed 462 CTCs, 173
(37%) of which were CTC clusters and 289 (63%) were single CTCs. For the following measurements, individual CTCs and
CTC clusters were grouped in the same category. In addition, we found high variability in the CTCs number in each movie
(Fig.1G). While the average number of CTCs observed per frame in movie 1 (Mov.1) was 9.4, the other movies displayed a
lower number: Mov. 2 was 4.5, and Mov. 3 was 3.6.

The size of the CTCs also varied between all three movies (Fig. 1G; Mov. 1-3). Our statistical analysis confirmed that the area
datasets from each movie were significantly different from one another (Mann-Whitney U p-value is < 2.2-16. Kruskal Wallis
p-values are as follows: Mov.1 and Mov.2: 0.01846, Mov.1 and Mov.3: <2.2-16, Mov.2 and Mov.3: <2.2-16). Despite these
differences, 81% of the CTCs in all the movies were smaller than 100 µm2 (Fig. 1G). These smaller CTCs have a far lower
variation in size than the larger CTCs (<100 µm2 Stdev = 21.8 = vs >100 µm2 Stdev = 146.3). We also used the software
ImageJ to investigate CTC shape. In all three of the movies, we observed a negative relationship between the area and
circularity of the CTCs (Fig. 1H). Small CTCs (<100 µm2) tend to be circular, while large CTCs (>100 µm2) tend to have
more variation in shape. However, in most the cases, CTCs display a low correlation coefficient (Mov 1 <100 µm2 = 0.1749,
Mov 1 >100 µm2 = 0.1749, Mov 2 <100 µm2 = 0.1386, Mov 2 >100 µm2 = 0.0059, Mov 3 <100 µm2 = 0.8774, Mov 3 >100
µm2 = No CTCs higher than100 µm2 were observed) (Fig. 1I), so there is only a clear linear correlation in the small CTCs in
one of the movies.

Our in vivo findings in fruit flies show similar results to those found in human patients and cancer cell lines, and we consider
that this type of work can be the first step to understanding how human CTCs behave in vivo. For example, as described
above, we observed that small CTCs (<100 µm2) display a lower variation in size and shape than large CTC (>100 µm2).
Similar to previous work, we observed that single CTC could be grouped in clusters, and each cluster can comprise variable
numbers of single CTCs (Ligthart et al. 2013). As a result, the size and shape of CTC clusters can become increasingly
unpredictable Fig. 1I). This phenomenon was also reported in CTC studies in breast, colorectal, and prostate cancer (Ligthart
et al. 2013). In addition, we observed examples of CTC cluster re-organization, from a circular to a more linear configuration,
resembling changes in the shape of CTCs observed when transiting through capillary-sized vessels in zebrafish (Au et al.
2016).

The difference in the CTC numbers and size needs to be studied in more detail. Although the videos analyzed belong to flies
of a similar genetic strain and the flies were exposed to similar environmental conditions, future studies are needed to test
whether this variation is a property of the system or not. Some of the variation observed among the three movies can be
partially due to the difference in size and locations of tumors generated by the MARCM clones. Our current working
hypothesis is that as the peripodial membrane is broken during development, the higher the number of tumors (RasV12 scrib1
clones) are located in the peripodial membrane (before 6 hrs AP), the higher number of future CTCs (between 6 to 10 hrs AP).

In addition, we found a much higher percentage of CTCs cluster (37%) compared to previous work (2.6%) (Aceto et al. 2014).
Future work needs to confirm these results using a 3-dimensional reconstruction of each CTCs because it is possible that
single CTCs can appear together in our 2-dimensional projections even though they are separated. In addition, future work can
also study in more detail the CTC dynamics, quantifying cell parameters such as the trajectory and velocity of CTCs.

To conclude, this work shows that using live imaging methods and multiple fluorescent markers, Drosophila pupal legs can be
a powerful tool to study CTCs in vivo in a physiologically relevant system to human cancer. Furthermore, our work showed
that CTCs can not only be easily tracked and quantified but also the concentration of CTCs in relationship with other cells may
be much higher than those previously reported, which is one of the main problems when studying CTCs.

Methods
Live imaging of the early pupal stages was performed between the rupture of the peripodial membrane and before head
eversion. For live imaging, pupae were mounted in halocarbon oil (series 700; Halocarbon Products) on a coverslip (Sigma)
and imaged with a laser 510 scanning confocal microscope (ZEISS model) at 25 degrees with a 40× objective, using LSM
Browser software (ZEISS). z-stacks had a 1μm step size.

Once the time-lapses were recorded, the computer program ImageJ was used to analyze the videos (NIH,
http://rsb.info.nih.gov/ij, released version 1.51 23 April 2018). 2D projections were generated, and every CTC or CTC cluster
was manually outlined through each video. Then, the application tool “analyze particles” of ImageJ was used to collect
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information about number, area, and circularity. The dataset was analyzed using excel and R programs for graphical and
statistical analysis.

To collect information about the quantity of CTCs and CTC clusters, cells were outlined in each frame of the videos. Thus, the
count of CTCs obtained from this analysis does not reflect how many CTCs were present in the movies, but rather, how many
were present in each individual frame of the movies. The size (area) of CTCs was measured in both individual CTCs and CTC
clusters, and both types of CTCs were grouped in the same category for our analysis (Zhou et al. 2019). The same approach
was used to analyze CTC shape (circularity).

Reagents

Tumorigenic cells in the fruit fly pupae were generated by using tumor suppressor genes scrib1 and oncogenes RasV12. Cells
exhibiting scrib1 were produced using FLP/FRT-mediated clonal analysis. The cross and the progeny were kept at 18°C, and
the pupae were switched to 29°C 8 hours prior to the movie and imaged at 29°C (Levayer et al. 2016). The tumor cells in the
fruit fly legs were identified by the expression of UAS-GFP transgene in the scrib1 cells. The expression of the UAS-GFP
transgene was made possible using the MARCM system (Brumby and Richardson 2003).

Genotype Source Stock #

Wild type and unflipped clones

hs-flp22; ubi-Cad::GFP, UAS-mRFP; act<y+<Gal4 Levayer et al., 2016

P{ry[+t7.2]=hsFLP}22, y[1] w[*]; P{ry[+t7.2]=neoFRT}82B bon[21B]/TM3, Sb[1] Bloomington stock center 43660

UAS-GFP.S65T; FRT82B,tub-Gal80/FRT82B Wu et al., 2010

Invasive clones (RasV12; scrib1)

UAS-GFP.S65T/UAS-RasV12; FRT82B,tub-Gal80/FRT82B,scrib1 Wu et al., 2010

P{ry[+t7.2]=hsFLP}22, y[1] w[*]; P{ry[+t7.2]=neoFRT}82B bon[21B]/TM3, Sb[1] Bloomington stock center 43660

Invasive clones (RasV12M6-/-)

yw, eyFlp; Act>y+>Gal4, UAS-GFP; Tub-Gal80, FRT79E,
Dunn et al., 2018

UAS-RasV12, M6-/-, FRT79E/TM6B
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Extended Data
Description: Movie 1. 2-Dimensional confocal projections showing circulatory tumors cells (CTCs) during early Drosophila
pupal leg and wing development. Schematic (A) and 2D projections (B-D) show the movement of CTCs during
morphogenesis. Panel A shows schematically the region imaged (dotted line). Panel B shows only the green channel, where
invasive tumor cells are marked with GFP. Panel C shows a composite of the green and DIC channels. This panel, in addition
to showing tumor cells, also allows for observing the developing legs and wings. Panel D shows the composite of the green
and DIC as well as various labels that allow for the direction of CTCs to be observed. CTCs are labelled within circles of
various colors. Arrows indicate the direction of CTC movement. Sections of developing leg are labelled with blue lines. The
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distal boundaries of leg and wing imaginal discs are labelled with yellow lines.. Resource Type: Dataset. File: Movie 1.mp4.
DOI: 10.22002/D1.20190

Description: Movie 2. 2-Dimensional confocal projections showing circulatory tumors cells (CTCs) during early Drosophila
pupal leg and wing development. 2D projections (A-B) showing the movement of CTCs during morphogenesis. Panel A
shows only the green channel, where invasive tumor cells are marked with GFP. Panel C shows a composite of the green and
DIC channel. CTCs are labelled within circles of various colors. Arrows indicate the direction of CTC movement. . Resource
Type: Dataset. File: Movie 2.mp4. DOI: 10.22002/D1.20191

Description: Movie 3. 2-Dimensional confocal projections showing circulatory tumors cells (CTCs) during early Drosophila
pupal leg and wing development. 2D projections (A-B) showing the movement of CTCs during morphogenesis. Panel A
shows only the green channel, where invasive tumor cells are marked with GFP. Panel C shows a composite of the green and
DIC channel. CTCs are labelled within circles of various colors. Arrows indicate the direction of CTC movement. . Resource
Type: Dataset. File: Movie 3.mp4. DOI: 10.22002/D1.20192
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