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Abstract
Deep learning methods have been developed to classify sleep states of mouse electroencephalogram (EEG) and
electromyogram (EMG) recordings with accuracy reported as high as 97%. However, when applied to independent datasets,
with a variety of experimental and recording conditions, sleep state classification accuracy often drops due to distributional
shift. Mixture z-scoring, a pre-processing standardization of EEG/EMG signals, has been suggested to account for these
variations. This study sought to validate mixture z-scoring in combination with a deep learning method on an independent
dataset. The open-source software Accusleep, which implements mixture z-scoring in combination with deep learning via a
convolutional neural network, was used to classify sleep states in 12, three-hour EEG/EMG recordings from mice sleeping in a
head-fixed position. Mixture z-scoring with deep learning classified sleep states on two independent recordings with 85-92%
accuracy and a Cohen’s κ of 0.66-0.71. These results validate mixture z-scoring in combination with deep learning to classify
sleep states with the potential for widespread use.

Figure 1. Evaluating the performance of mixture z-scoring followed by deep learning sleep classification
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a) Metrics evaluating the performance of the algorithm on three sleep states and overall accuracy on the 20% test set. Prec.,
precision; Rec., recall. precision=TP/(TP+FP), recall=TP/(TP+FN), and accuracy=(TP+TN)/(TP+TN+FP+FN), where TP, TN,
FP, FN are the numbers representing true positive, true negative, false positive, and false negative, respectively. b) Hypnogram
of human scoring compared to deep learning classification of a single independent held-out recording.

Description
Classification of rodent sleep recordings requires expert human researchers to manually score the EEG/EMG into various
sleep states, at the cost of high labor and time bottlenecks. To overcome these limitations, machine learning methods were
developed to automatically classify sleep states with accuracies ranging from 70% to 95% (Charbonnier et al. 2011; Libourel
et al. 2015). Recently, deep learning methods to classify sleep states have reported accuracies up to 97% (Miladinovic et al.
2018; Barger et al. 2019; Yamabe et.al. 2019). While these deep learning methods have proven to be highly accurate when
trained and validated on their own datasets, generalization to independent datasets has been difficult (Katsageorgiou et al.
2015). Generalizability across datasets is challenging because independent datasets are often collected under experimental
(e.g., sleep deprivation, pharmacological manipulation, or disease states) or recording (e.g., variability between different
genetic strains of mice, electrode placement, or the presence of artifacts) conditions different from the original training dataset.
Thus, a pre-processing method that standardizes EEG/EMG recordings is needed prior to classifying sleep states by use of
deep learning methods.

One way to standardize EEG/EMG recordings is through mixture z-scoring (Barger et al. 2019). To prevent systematic bias
and preserve the distributional shifts that occur across datasets, mixture z-scoring calibrates each mouse’s recording using a
small amount of labeled data. This standardization combined with a deep learning-based classification model has been
successfully implemented and tested on a single dataset with an accuracy of 97% (Barger et al. 2019). Unfortunately, this
method has not been validated on an independent dataset. The purpose of this study is to validate mixture z-scoring combined
with deep learning of an EEG/EMG dataset collected under specific experimental (head-fixation) and recording (non-wild type
mice with cranial plexiglass windows and EEG electrodes placed laterally on the skull) conditions. We find that despite
experimental and recording conditions unique to this independent dataset, mixture z-scoring followed by deep learning
classifies sleep state with a high level of accuracy. Therefore, this method holds promise for widespread use.

RESULTS

To validate mixture z-scoring combined with deep learning-based sleep state classification on an independent dataset, data
from 11 mice undergoing sleep recordings and optical imaging in the head fixed position were trained and validated using the
open-source software Accusleep. When applied to test data, mixture z-scoring combined with deep learning yielded an overall
accuracy of 86% and a Cohen’s κ of 0.71 indicating substantial agreement (Figure 1a) (Landis and Koch 1977). For the
individual sleep states the precision (recall) was 0.91 (0.88) for wakefulness, 0.76 (0.80) for NREM, and 0.81 (0.91) for REM
(Figure 1a).

To further illustrate the ability of mixture z-scoring combined with a deep learning-based model to classify sleep states, two
unseen 3-hour recordings were classified. As depicted by the hypnogram (Figure 1b), there was a substantial agreement in the
temporal pattern (sleep cycles) of transitions between wakefulness, NREM, and REM between the human raters and the deep
learning method with an accuracy of 92% and a Cohen’s κ of 0.71. For individual sleep states the precision (recall) was 0.94
(0.96) for wakefulness, 0.76 (0.67) for NREM, and 0.95 (0.87) for REM. For the other individual recording, the deep learning
method yielded 85% accuracy and a Cohen’s κ of 0.66. Precision (recall) was 0.94 (0.86) for wakefulness, 0.65 (0.86) for
NREM, and 0.96 (0.70) for REM. Together, these results show that sleep states classified by mixture z-scoring combined with
deep learning-based model can achieve a high degree of accuracy (85-92%).

DISCUSSION

The purpose of this study was to assess the generalizability of mixture z-scoring combined with a deep learning model to
classify mouse sleep states. When applied to an independent EEG/EMG sleep dataset, this approach successfully classified
sleep states with high accuracy.

Accurate sleep state classification by deep learning often relies on large sample sizes and high-quality recordings. Previous
attempts of applying machine learning algorithms to small-scale datasets (N=14 for a training set) yielded an accuracy of 91-
96%, which is lower than the 94-97% accuracy achieved when applied to large-scale datasets (N=4,200) (Yamabe et al. 2019).
In this study, mixture z-scoring combined with a deep learning-based model applied to a small-scale (N=11) dataset achieved
an accuracy of 85-92%, but was not as high as the 97% previously reported when applied to a different dataset (Barger et al.
2019). One potential reason for the decreased accuracy may be due to the decreased size of the dataset compared to the
original dataset (Barger et al. 2019). Another potential reason could be the lateral placement of the EEG electrodes used in this
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study. The EEG electrodes were placed laterally, compared to the typical somatosensory or motor cortex locations, to avoid
obstruction of the field of view of the plexiglass window used for simultaneous optical fluorescence imaging. As a result, the
electrodes were located adjacently to muscles attached to the skull and could have led to poorer signal quality, changes in the
EEG spectral profile, and subsequent poorer performance of the model. Another cause of the disrupted signal could be due to
the head fixed position of the mice during recordings (typically mice are freely moving during sleep studies). This unnatural
sleeping position (mice prefer to sleep in a curled-up position) may have prevented a clear differentiation of the relatively
decreased muscle tone of NREM and REM sleep in the EMG, potentially leading to decreased performance of the model. A
fourth possible source of signal quality disruption is the inclusion of artifacts into the training of the sleep classification model.
Often, artifacts will be removed prior to sleep-state classification model training. In this study, artifacts were not excluded
when training the model in order to replicate real-world settings where artifacts are typically part of the recordings, which may
have decreased the accuracy. To address potential causes for decreased accuracy, a future study using EEG electrodes placed in
typical skull locations in a higher number of freely moving mice with all artifacts excluded is needed.

Manual scoring of EEG/EMG sleep recordings is laborious, requires highly-trained experts and is prone to inter-individual
variability. Expert human scorers of EEG/EMG often only agree upwards of 92%, and the level of disagreement increases
during sleep-wakefulness transitions (Loredo et al. 1999; Rosenberg et al. 2013). In our study, the largest source of
disagreement between human scored EEG/EMG and the mixture z-scoring and deep learning model was also at transitions
between wakefulness and NREM which is known to often contain a mixture of sleep states and historically has the lowest
inter-rater reliability among human scorers (Merica and Fortune 2004). To avoid sleep-wake transition misclassifications,
other studies have assigned sleep states based on a consensus of multiple experts independently scoring the same recording
(Yamabe et al. 2019). Our study, however, used EEG/EMG recordings scored by a single sleep scoring expert (E.L.),
increasing the possibility for human error with the subsequent decreased performance of the model. Future studies assessing
the generalizability and accuracy of sleep state classification models may be improved by using datasets scored by a consensus
of sleep-scoring experts.

Mixture z-scoring is designed to allow for generalizability across datasets by calibrating the deep learning model using
representative samples of each state in the recording of each subject. However, the selection of representative samples could
have had a significant influence on performance by biasing the deep learning classifier to look for similar samples within the
recording. For example, NREM sleep is defined by the presence of slow waves and spindles whereas REM sleep can be phasic
or tonic in humans and intermediate sleep with high amplitude theta activity can precede the onset of REM in rodents (Glin et
al. 1991). In this study, 100 representative seconds per state (Wake, NREM, REM) were used for calibration. If some of these
NREM/REM characteristics were over or underrepresented in the calibration, it may have biased classification toward or away
from certain EEG/EMG characteristics. Alternatives in the future would be to increase the amount of representative scoring
samples or to examine the effect of systematically varying which representative samples are used for mixture z-scoring.

In summary, applying mixture z-scoring combined with deep learning-based classification model using an independent dataset
with unique recording and experimental conditions was able to classify sleep states with an accuracy of 85% to 92%. While
this accuracy is not as high as previously reported methods, the accuracy of the model may have been limited by, the size of
the dataset, changes in signal quality, human error, or the choice of samples used for mixture z-scoring calibration, which
should be accounted for in future studies. Despite its limitations, this study will be useful to sleep researchers planning to
implement machine learning models on their own experimental datasets using automated methods that can achieve ~90%
accuracy. Future studies replicating these findings across multiple independent datasets would further strengthen the claim that
mixture z-scoring followed by deep learning is a valid methodology and would encourage widespread use.

Methods
This study was approved by the Washington University School of Medicine Institutional Animal Care and Use Committee and
performed in accordance with National Institutes of Health Guide for the Care and Use of Laboratory Animals. A total of 12
transgenic mice (12-16 weeks of age) expressing GCaMP6f in excitatory neurons (driven by a Thy1 promotor) acquired from
Jackson Laboratories (JAX Strain: C57BL/6J-Tg(Thy1-GCaMP6f)GP5.5Dkim; stock: 024276) were used. Mice were housed
in 12:12 hour light/dark cycles with lights on at 6:00 AM and given ad libitum access to food and water.

Experimental Design

EEG/EMG data of head-fixed mice was collected during wakefulness, NREM (Non-rapid Eye Movement) sleep, and REM
(Rapid Eye Movement) Sleep reported in a previously published dataset (Landsness et al. 2021). Prior to data collection, mice
were acclimated to head fixation while secured in a black felt hammock for one to three sessions ranging from 30 to 180
minutes until the EEG/EMG signals showed the presence of sleep. Once sleep was established in the head-fixed position, the
mouse then underwent a three-hour undisturbed recording session. All recordings occurred between 9:00 AM and 1:00 PM
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during the mice’s normal sleeping hours to maximize the chance of recording sleep. After 12 three-hour recordings were
collected, human experts scored recordings in 10-second epochs as wakefulness, NREM, or REM as previously described
(Zhang et al. 2021).

Surgical Techniques

As part of the previously published dataset, mice had been fitted with EEG/EMG electrodes and plexiglass windows to allow
simultaneous EEG/EMG and optical fluorescence imaging (Landsness et al. 2021). Following scalp retraction, EEG pins
(Newark Electronics, catalog # 89H8939) were placed at the surface (0.7 mm cranial burr holes) of the brain overlying the
somatosensory cortex (-7mm posterior to bregma, and +4mm lateral to bregma) and fixed with Fusio dental cement. An EEG
pin placed on the surface of the cerebellum served as a bipolar reference. To record muscle activity, two 23-gauge stainless
steel needles were inserted bilaterally into the neck muscles. A plexiglass head cap was fixed with a translucent adhesive
cement (C&B-Metabond, Parkell Inc., Edgewood, New York) to allow for chronic, repeated imaging (Wright et al. 2017).
Following surgery, mice were allowed to recover for 7 days in their home cages.

Deep learning and mixture z-scoring

Eleven, 3-hour EEG/EMG recordings were manually scored in 10-second epochs for a total of 11,880 epochs. Then the pooled
11,880 epochs were randomly split into a training (80%), validation (10%), and test (10%) set. The EEG/EMG spectrogram of
the pooled data of the training set was used to train the convolutional neural network (CNN) deep learning model described in
Barger et al. From the training set, 100 seconds of expert-scored wakefulness, NREM, and REM from each record underwent
mixture z-scoring to create calibration files specific to each subject. Then the remaining test set from each record was
classified by the CNN. To further evaluate the performance of deep learning sleep state classification on a recording that was
previously unseen by the model, two complete 3-hour recordings from two independent mice were withheld from the initial
training. These recordings had mixture z-scoring applied to 100 seconds of each sleep state and were then classified with the
CNN.

Deep learning sleep classification and mixture z-scoring was implemented using the open-source software program AccuSleep
(custom MATLAB package). https://github.com/zekebarger/AccuSleep

Statistical comparisons

Metrics including precision=TP/(TP+FP), recall=TP/(TP+FN), and accuracy=(TP+TN)/(TP+TN+FP+FN), where TP, TN, FP,
FN are the numbers representing true positive, true negative, false positive, and false negative, respectively, were used to
evaluate the model performance. The Cohen’s kappa statistic, κ, was computed to assess the inter-rater reliability between
manual EEG/EMG-based scoring and mixture-z scoring with deep learning-based classification results. The kappa statistic is
thought to be a more robust measure than percent agreement, and a kappa magnitude between 0.61 and 0.80 indicates a
substantial agreement between the two raters (Landis and Koch 1977; Zhou et al. 2021).
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