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Abstract

We used paired-end next generation sequencing (NGS) to characterize the classic isoform-specific pkpkl and pksPlel mutations
of the prickle gene in Drosophila melanogaster. Here we provide evidence that these previously reported null mutations are

caused by either a tirant transposon insertion into the 5 UTR of pkpk1 or a premature stop codon in the second exon of pksPIEI.

Additional likely benign missense mutations were identified in both mutant isoforms.
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Figure 1. Mapping of exonic alterations in pkPX! and pk*P'¢! Drosophila mutants.

(A) Table describing all missense mutations identified in exons of pk transcript variant A (pkpk) for the pkpkl mutant. Mutation
locations are indicated by number in relation to the reported mRNA sequence. Both exons indicated (2 and 6) are shared

between isoforms. (B) Table describing all mutations in the exons of pk transcript variant C (pk®P'€) for the pksP'el mutant.
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Mutation locations are indicated by number in relation to the reported mRNA sequence. Exons include the pk®’'¢ isoform-
specific exons (1 and 2) as well as the shared exon 7. (C) Graphical representation showing alterations in pk transcript variant
A for the pkpkl mutant. The red box in the 5° UTR region depicts the tirant insertion, while the yellow lines and arrowheads
indicate the missense mutation sites described in panel A in relation to the PET (pink) and LIM (green) domains. (D)
Graphical representation showing alterations in pk transcript variant C for the pk5p131 mutant. The red and yellow lines and
arrowheads indicate nonsense and missense mutations, respectively (exon 2). (E) Magnified view of the tirant insertion site in
pk transcript variant A for pkpkl. The boxes below the tirant schematic show an enlarged view of the PCR-confirmed DNA
sequences adjacent to and within the transposon insertion with yellow boxes highlighting the first translation start codon along
with in-frame stop codon. A duplication of the CGCG region normally found at the insertion position is indicated in the 5’
UTR flanking the tirant sequences. (F — H) Comparison of amino acid sequence among several Drosophilidae family

members in addition to mosquito (Aedes aegypti) in region of the missense and nonsense mutations of pkpkl and pksPlel.

Description

The prickle gene in Drosophila melanogaster has been studied for decades for its involvement in planar cell polarity (PCP),
and more recently, epilepsy (Tao et al. 2011, Matis and Axelrod 2013, Ehaideb et al. 2014, Ehaideb et al. 2016). prickle
expresses three isoforms, prickle-prickle (pkpk; pk-RA, FBtr0089042), prickle-M (pkM; pk-RB, FBtr0089043), and prickle-
spiney-legs (pksPle; pk-RC, FBtr0089044). While pkM expression is initiated during embryogenesis, expression ceases prior to
the end of pupation (Gubb et al. 1999). On the other hand, both pkPK and pk*P'€ are only expressed post-embryonically (Gubb
et al. 1999). All isoforms arise from alternative start sites and differ based on 5’ coding or non-coding exons (Gubb et al.
1999). Mutations that affect pkPK or pkSP!€ isoforms have been shown to alter development of the fruit fly body plan including
the orientation of eye ommatidia as well as positioning of epidermal hairs and bristles of the wing and body (Gubb 1998, Gubb
et al. 1999, Green et al. 2000, Strutt and Strutt 2007, Lin and Gubb 2009, Jenny 2010, Matis and Axelrod 2013, Carvajal-
Gonzales and Mlodzik 2014). In addition, pk isoforms are required in the nervous system to ensure proper neuronal wiring and
function (Mrksusich et al. 2011, Ng 2012, Ehaideb et al. 2014), while mutations specifically affecting pk™ have not been
identified (Gubb et al. 1999). Although some mutations affecting Drosophila prickle isoforms have been approximately
defined (pkPk-sP1e13: Gubb et al. 1999) or mapped (pkPK3%; Green et al. 2000), the original pk®P'¢! and pkPK! mutations (Gubb
and Garcia-Bellido 1982) have heretofore remained uncharacterized.

We used paired-end Illumina next generation sequencing to characterize and map pkPK! and pk®P!¢! mutations. On average, for
the pkPX! (and pk*P'el) mutants, 96.5% (and 96.8%, respectively) of the genome had at least 1X read coverage, 92.3% (and
93%, respectively) had at least 10X read coverage, and 84.3% (and 85.8%, respectively) had at least 30X read coverage. For
the genomic region encompassing the prickle locus, both mutants had at least 30X read coverage. No mutations affecting
predicted splice-sites were found in either mutant. Two nonsynonymous mutations, C902A and T2690C, were identified in
pkpkl (Figure 1A), neither of which fall within the evolutionarily conserved protein-protein-interaction PET and LIM domains
(Figure 1C; Gubb et al. 1999, Sweede et al. 2008). Additionally, alignment of paired-end reads to the dm6 D. melanogaster
genome revealed a region 13 bases downstream of the transcription start site of prickle transcript variant A that only showed
alignment of one out of the two reads of numerous paired-end sequences. Analysis of the unmapped read of these pairs
identified sequences from a tirant transposon (Figure 1C; Cafiizares et al. 2000) which was confirmed with PCR followed by
Sanger sequencing (partial sequence for the tirant insertion is shown in Figure 1E). This transposon insertion is thus likely
responsible for the loss-of-function phenotype in the pkpkl mutant, particularly given the numerous start and stop codons at the
5’ end of the tirant sequence which would be predicted to be utilized in favor of the correct distal downstream pkpk start codon
(see Figure 1E). In pksPleI homozygous mutants, we identified nonsense (C1593T) and missense (A1601C) mutations in the

coding sequence, both of which were located at the 3’ end of the pksPle—speCific second exon of prickle transcript variant C
and upstream of the PET and LIM domain exons (Figures 1B, 1D). These data suggest that the premature stop codon is likely

responsible for loss-of-function of pk*P'€ in the pk*P!e! mutant.

In order to assess whether the nonsynonymous mutations found in the pkpkl or pksl’l‘ﬂ sequences could significantly affect
prickle gene function, we examined the conservation of amino acids in these regions. In pkpkl, while both mutations fall in
conserved regions (as predicted by PhyloP in the UCSC Genome Browser; Figures 1F and 1G), they are likely tolerated and
non-deleterious. C902A of pkpkl (Figure 1F) replaces proline with threonine, an amino acid that is similar in structure to the
serine found at that position in a close outgroup to the Drosophilidae family (Aedes aegypti, the mosquito), although this
region of the protein shows relatively poor conservation between D. melanogaster and A. aegypti. T2690C also is likely non-
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deleterious, as Drosophila melanogaster is the only member of family Drosophilidae shown to contain a serine at this location
while all others carry the amino acid that is inserted due to the missense mutation (proline; Figure 1G). Further evidence is
found in D. melanogaster sequences submitted to GenBank (www.ncbi.nlm.nih.gov/genbank/) that indicate a proline at this

position (GenBank identifiers AJ243708.3, BT126167.1). In pksPIel, the nonsynonymous mutation occurs immediately
downstream from the premature stop site and replaces a glutamine with proline, the amino acid found at the analogous

position in another member of the Drosophilidae, D. ananassae (Figure 1H). Additionally, this region of pksPle is poorly

conserved. Collectively, these results argue that the missense mutations found in pkpkl and pksPlel are less likely to be
deleterious.

Methods

Outcrossing of pk Lines

Both pkPX! and pk®P'e! were outcrossed for 10 generations into a w18 line obtained from Dr. Andy Frank (University of Iowa)
prior to whole genome sequencing. This line was chosen because it has robust neurotransmission and growth properties at the
neuromuscular junction (Yeates et al. 2017). prickle mutant bristle phenotypes were confirmed at each relevant step.

Whole Genome Sequencing:

Genomic DNA (from 5 whole male and 5 whole female flies) was extracted with the DNeasy Blood & Tissue Kit (Qiagen).
Library preparations and whole Genome Sequencing (paired-end 2 x 150 bp reads, Illumina NovaSeq 6000) was performed by
the Iowa Instituite of Human Genetics (IIHG) Genomics Division at the University of Iowa
(https://medicine.uiowa.edu/humangenetics/genomics-division).

Genome Assembly

FastQC program v0.10.0 (Wingett and Andrews 2018) was used to perform quality control analysis of the paired end

sequencing data for the pkpkl and kaPId samples. Illumina adapter contaminants were removed from the sequencing data
using the Trimmomatic v0.32 (Bolger et al. 2014) with the following settings ILLUMINACLIP: <file of ADAPTERS.txt>
:4:40:12 HADCROP:15 SLIDINGWINDOW:5:30 AVGQUAL:30 CROP:130 MINLEN:36. Both single and paired end reads
retained after adapter trimming were mapped to the dm6 genome using bwa v0.7.5 (Li and Durbin 2009) and samtools v0.1.18
(Li et al. 2009). Reads with one pair mapping to a given genomic interval in chr2R of the dm6 genome and their associated
unmapped pair were identified using a bedtools v2.26 (Quinlan et al. 2010), samtools v1.31 (Li et al. 2009), awk programming

language, and bash scripting. This data was used to identify the insertion of a transposon sequence in the pkpkl mutants in the
neighboring region of these mapped single end reads.

Total reads were counted from the fastq.gz files of every sample using Linux shell commands. Trimmed read and mapped read
counts were generated from .bam alignment files of every sample using samtools flagstat command. Total bases of the dm6
genome were computed from the chromosome sizes file that was generated from the FASTA index file of the dm6 genome
using samtools v0.1.18 (Li et al. 2009) and Linux shell commands. The chrUn and chromosomes with ‘random’ in their
sequence identifiers were filtered out. Coverage for every sample was generated by counting the number of bases in the dm6
genome covered by at least 1, 10, or 30 mapped reads independently using bedtools v2.26 (Quinlan et al. 2010) genomcov
program and shell scripting.

Sanger Sequencing using an ABI3500 Sanger Sequencer was performed on PCR-amplified fragments to confirm both the

insertion of the tirant transposon of pkpk1 and the premature stop codon of pksPlel mutants as well as all other missense

mutations. The Multiz Alignment tool (Blanchette et al. 2004) in the USCS Genome Browser (Kent et al. 2002, Karolchik et
al. 2004) was used to compare amino acid sequences.

Reagents

Drosophila Melanogaster

Stock Number, Bloomington
Genes Affected Genotype
Drosophila Stock Center

BDSC 367, FBst0000367 w, pk, cn w(1118];pk[1] cn[1]
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BDSC 422, FBst0000422 w, pk w[1118];pk[sple-1]

n/a; line obtained from Dr. Andy Frank w w[1118]
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