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Abstract
Insulin and insulin-like growth factor signaling (IIS) is an anabolic pathway conserved among humans and Caenorhabditis
elegans. In humans, the tumour suppressor protein Phosphatase and Tensin Homolog (PTEN) inhibits IIS, preventing
excessive growth. PTEN variants are associated with disease, but how they affect PTEN function is not well understood. Here,
we characterized variants of unknown significance (VUSs) implicated in autism spectrum disorder by studying homologous
mutations in the C. elegans protein DAF-18 to infer how they play a role in human disease.We found that variants D66E and
L115V are likely benign, H168Q is intermediate while variants H138R and T176I are likely pathogenic.

Figure 1. Variants of DAF-18 and their respective phenotypes.:

A) Structure of the human PTEN protein. Mutations D22E, L70V, H93R, H123Q, and T131I are illustrated with red. B)
Structure of the C. elegans DAF-18 protein. Conserved DAF-18 mutations based on the PTEN variants, D66E, L115V,
H138R, H168Q, and T176I in the phosphatase domain are illustrated with red. Adapted from Liu et. al. (2013), and Dirican &
Akkiprik (2017). C) The graph shows the percentage of animals that enter dauer diapause after being exposed to dauer-
inducing conditions (48 hours at 27 °C) in wild type, daf-18(qu52) knockout, and daf-18 VUS strains. Graph shows mean +
SEM of three independent experiments for dauer entry data, n = 100-150 per experiment. One-way ANOVA, Dunnett’s
multiple comparisons test, **=p<0.009; ****=p<0.00009; ns = not significant. D) Survival of wild type, daf-18(qu52)
knockout, and daf-18 VUS strains in L1 arrest survival assay at 20 °C. n = 100-150 per strain at each day. Ordinary one-way
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ANOVA test was performed on the area under the curve value of each survival curve with at least three independent trials per
strain. Error bars represent +/- SD of three independent trials at each timepoint (100-150 worms per day in each trial). E) The
graph shows the average number of divided neuroblast Q-cells in wild type, daf-18(qu52) knockout, and daf-18 VUS strain
animals, recorded for day 5-8 in L1 arrest at 20 °C. Graph shows mean + SEM of three independent experiments for Q-cell
division data, n = 100-150 per experiment. One-way ANOVA, Dunnett’s multiple comparisons test, ****=p<0.00009; ns = not
significant. F) The graph shows average pharyngeal pumping activity of day 1 adult wild type, daf-18(qu52) knockout, and
daf-18 VUS strains recorded at 20 °C nematode growth medium. Pharyngeal pumping rate was measured as pumps per 10
seconds. Graph shows mean + SEM of three independent experiments for pharyngeal pumping data, n = 100-150 per
experiment. One-way ANOVA, Dunnett’s multiple comparisons test, *=p < 0.05; ****=p<0.00009; ns = not significant.

 

Description
Phosphatase and Tensin Homolog (PTEN) acts as a key suppressor of the insulin signaling pathway and thus regulates cell
growth and development (Leslie et al., 2008). In humans, this protein still has numerous clinically important variants of
unknown significance (VUS) which are implicated in disorders such as autism spectrum disorder (ASD) and are classified as
neither pathogenic nor benign (Yehia et al., 2020). Our research aims to classify five of these variants previously implicated in
ASD using the model organism Caenorhabditis elegans (C. elegans) (Wong et al., 2019). The insulin pathway is well
conserved across metazoans, and thus using this model organism is advantageous as this allows us to characterize PTEN
variants by studying its C. elegans homolog DAF-18 (Post et al., 2020). In 2019, Wong et al. characterized DAF-18 variants
D66E, L115V, H138R, H168Q, and T176I, which correspond to PTEN variants D22E, L70V, H93R, H123Q, and T131I
implicated in ASD (Figure 1A-B). Their analysis focused on morphology and locomotion defects, while González-Cavazos et
al. in 2019 studied the effects of these variants on dauer entry. Our work aimed not only to replicate the results found by
González-Cavazos et al., 2019 but also to characterize the DAF-18 variants with three new assays: L1 arrest survival, Q-cell
division in L1 arrest, and rate of pharyngeal pumping off-food.

C. elegans enter dauer diapause under stressful conditions (such as crowding, starvation, and high temperature), which is
typically accompanied by decreased insulin signaling (Karp, 2018). Measuring dauer entry is an effective way to indirectly
assess the extent of activation of the insulin signaling pathway. In our work, we exposed C. elegans to high temperature (27
°C) for 48 hours, and dauer entry of wild type, daf-18 knockout (qu52), daf-18(sy879)[D66E], daf-18(sy887)[L115V], daf-
18(sy881)[H138R], daf-18(sy885)[H168Q], and daf-18(sy882)[T176I] strain were observed. Results published by González-
Cavazos et al., 2019 using dauer pheromone to induce dauer showed that variants daf-18(sy879)[D66E], daf-18(sy887)
[L115V] and daf-18(sy885)[H168Q] were similar to wild type worms, whereas daf-18(sy881)[H138R] and daf-18(sy882)
[T176I] variants were more dauer defective compared to wild type, with daf-18(sy882)[T176I] showing a stronger phenotype
than daf-18(sy881)[H138R]. In our studies, we found that the daf-18(sy879)[D66E] and daf-18(sy887)[L115V] strains
resembled wild type in terms of dauer entry, whereas daf-18(sy885)[H168Q], and daf-18(sy882)[T176I] were more dauer
defective (Figure 1C). Overall, our findings mostly agreed with published data, with the exception of the daf-18(sy885)
[H168Q] strain, though it did have more dauer entry than the dauer defective daf-18(qu52) control (Figure 1C).

Measuring L1 arrest survival is another way to assess activation of the insulin signaling pathway, with increased insulin
signaling leading to shortened survival (Baugh et al., 2006; Chen et al., 2022). We thus assessed the L1 arrest survival ability
of the VUS strains compared to wild type and daf-18(qu52) controls. Figure 1D shows the daf-18(sy879)[D66E] is not
significantly different from wild type which further classifies this variant as most benign. The daf-18(sy887)[L115V], and daf-
18(sy885)[H168Q] live longer in L1 arrest than the daf-18(qu52) knockout and therefore are intermediate and not likely null
alleles. The daf-18(sy881)[H138R] and daf-18(sy882)[T176I] worms have similar L1 arrest survival to that of the daf-
18(qu52) knockout strain, with daf-18(sy881)[H138R] not being significantly different from the daf-18(qu52) knockout (One-
way ANOVA, p=0.9706). This fits in with the published data and further characterizes D66E, L115V, and H168Q variants as
benign and H138R and T176I as pathogenic (González-Cavazos et al., 2019). This assay reveals potential phenotype
uncoupling with the daf-18(T176I) being more dauer defective than the daf-18(sy881)[H138R] strain, while having a higher
survival in L1 arrest (One-way ANOVA p=0.0283).

Another readout of inappropriate activation of IIS in L1 arrest is the presence of divided, fluorescently tagged neuroblast
precursor “Q-cells” (Zheng et al., 2018). We thus quantified Q cell division during L1 arrest of the VUS strains compared to
wild type and daf-18(qu52) controls. Our experiments once again supported daf-18(sy879)[D66E], daf-18(sy887)[L115V], and
daf-18(sy885)[H168Q] variants displaying a more benign phenotype while daf-18(sy881)[H138R] and daf-18(sy882)[T176I]
variants were more pathogenic. Figure 1E shows that the daf-18(sy881)[H138R] and daf-18(sy882)[T176I] variants had some
Q-cell division, which is indicative of an overactive IIS in L1 arrest and supports the deleterious effect of these variants.
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Notably, the phenotypes of daf-18(sy881)[H138R] and daf-18(sy882)[T176I] variants were not as strong as the daf-18(qu52)
knockout control, which shows up to 100% Q-cell division in L1 arrest, suggesting that these variants are not completely null
for daf-18 function.

Pharyngeal pumping can be used to measure food intake, which is increased during IIS activation in C. elegans(Avery & You,
2018). Previous research shows that worms with an impaired IIS are unable to cease pumping while off food compared to wild
type worms (Dallière et al., 2016). We thus quantified the pharyngeal pumping rate of the five DAF-18 VUS strains when
taken off the food. We found that the daf-18 knockout C. elegans had a higher pharyngeal pumping rate when taken off food
(Figure 1F), as published. Of the VUS strains, daf-18(sy879)[D66E], daf-18(sy887)[L115V], daf-18(sy885)[H168Q], and daf-
18(sy882)[T176I] were similar to wild type, whereas daf-18(sy881)[H138R] variant resembled the daf-18 knockout (Figure
1F). This mostly supports our classification of daf-18(sy879)[D66E], daf-18(sy887)[L115V], and daf-18(sy885)[H168Q] as
benign and daf-18(sy881)[H138R] and daf-18(sy882)[T176I] as potentially pathogenic, except for daf-18(sy882)[T176I],
which could be due to phenotype uncoupling.

Together, the dauer entry, L1 arrest survival, Q-cell division in L1 arrest, and off-food pharyngeal pumping assays show that
the D66E variant is most likely benign, being similar to wild type in all experiments. The L115V is also likely benign, being
like wild type in 3 of the 4 assays. Meanwhile the H168Q variant appears to be intermediate in terms of its pathogenicity,
showing phenotypic defects in half of the experiments. T176I is a stronger variant, with the daf-18(sy882)[T176I] allele
conferring defects in all but the pharyngeal pumping assay. Meanwhile, the strongest allele appeared to be daf-18(sy881)
[H138R], being significantly more deficient than wild type in all assays, and even being similar to the daf-18(qu52) knockout
when it came to L1 arrest survival and pharyngeal pumping. Future work involving structural analysis of these variants could
complement our findings. Furthermore, assessing VUSs of PTEN could be done without first needing to find and create
homologous DAF-18 variants through replacement of daf-18 with different variants of human PTEN via CRISPR. Our
research thus helped characterize PTEN variants and has laid the groundwork for analyzing future clinically significant
variants.

Methods
C. elegans growth conditions: C. elegans strains were grown on standard nematode growth medium agar plates (NGM)
seeded with 100ml saturated culture Escherichia coli (E. coli) OP50 bacteria. Worms were kept in 20 °C at all times except
during counting or unless stated otherwise.

Dauer assay: 100-150 synchronized L1 larvae were plated on seeded NGM plates and kept at 27 °C for 48 hours to induce
dauer (for details, see Ailion & Thomas, 2000). SDS selection (1% SDS for 30 minutes) was then used to identify dauer and
non-dauer worms, as non-dauer worms are killed by the SDS solution. The dauer vs. non-dauer (dead) animals were then
manually counted. Three repeats of dauer vs. non-dauer count were done for each strain.

L1 arrest survival assay: C. elegans were placed in L1 arrest though sodium hypochlorite treatment and kept in 1.5ml tubes
in M9 buffer on a rotator at 20 °C. M9 concentration was adjusted on day 1 of L1 arrest to obtain 10-15 worms per 1ml.
Aliquots of 10ml were taken daily to count alive versus dead C. elegans (n=100-150 on each day). Three repeats were done for
each strain. Statistics were carried out using GraphPad Prism software version 9.

Q-cell division assay: C. elegans were placed in L1 arrest using the methods described above. Q-cell division was scored
manually throughout days 5-8 of L1 arrest by taking 10ml daily and counting the proportion of C. elegans with divided Q-cells
(n=100-150 on each day). Division was visualized though a tagging the promoter of a protein expressed in the touch neurons
(Pmec-4::GFP), and recording presence of the Q-cell descendant neuron, AVM (Zheng et al., 2018). Three repeats were done
for each strain.

Off-food pharyngeal pumping assay: 100-150 synchronized day 1 adultC. eleganswere washed three times with M9 buffer
to remove bacteria. They were then plated onto NGM plates with no bacteria and pharyngeal pumping was manually measured
(number of pumps per 10 seconds) after a 1-hour adjustment period.

Reagents
Strains:

Strain
# Genotype Description
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N2 Wild type Wild isolate from Bristol

IC83 zdIs5 [Pmec-
4::GFP+lin-15(+)] I Touch neurons expressing GFP to visualize AVM and PVM (Q-cell descendants)

IC2384

zdIs5 [Pmec-
4::GFP+lin-
15(+)]I;daf-
18(sy879)IV

Touch neuron marker with DAF-18 variant D66E

IC2385

zdIs5 [Pmec-
4::GFP+lin-
15(+)]I;daf-
18(sy887)IV

Touch neuron marker with DAF-18 variant L115V

IC2386

zdIs5 [Pmec-
4::GFP+lin-
15(+)]I;daf-
18(sy885)IV

Touch neuron marker with DAF-18 variant H168Q

IC2389

zdIs5 [Pmec-
4::GFP+lin-
15(+)]I;daf-
18(sy881)IV

Touch neuron marker with DAF-18 variant H138R

IC2388

zdIs5 [Pmec-
4::GFP+lin-
15(+)]I;daf-
18(sy882)IV

Touch neuron marker with DAF-18 variant T176I

IC2251

zdIs5 [Pmec-
4::GFP+lin-15(+)]I;
daf-18(qu52)
[GFP(+)::Δ daf-18] IV

Touch neuron marker with daf-18 KO – allele qu52. The daf-18(qu52) allele is a
Crispr/Cas9 edited strain where GFP is inserted at the start codon of daf-18 locus, creating
a transcriptional reporter and an out of frame daf-18 knock out. Sequences are available
upon request.
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