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Abstract
To learn if orthologous mutations are temperature-sensitive in related species, we studied four C. briggsae mutations
orthologous to alleles of important C. elegans genes. Both Cel-glp-4(bn2) and Cbr-glp-4(v473) are temperature-sensitive,
causing sterility at 25°C. By contrast, Cel-fog-1(q253) is strongly ts, but its ortholog Cbr-fog-1(v442) causes a loss-of-function
at all temperatures. Finally, the C. elegans glp-1 alleles bn18 and e2141 are ts sterile. However, their C. briggsae orthologs,
Cbr-glp-1(v429) and Cbr-glp-1(v438) respectively, are wild-type at all temperatures. Thus, a ts mutation in one species
provides clues about how to design ts alleles in another, but all theoretical outcomes are possible.

Figure 1. Analysis of temperature-sensitivity in orthologous mutations

(A) Graph showing sterility of C. briggsae mutant hermaphrodites at three temperatures. Circles represent the percent
displaying the trait, and lines represent 95% confidence limits, calculated using the Wilson/Brown method, implemented by
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GraphPad Prism. (B) Differential Interference Contrast (DIC) image of a glp-4(v473) XX animal at 25° C. The yellow arrow
marks the vulva. There is no visible germ line. Anterior is left and ventral is down. (C) DIC image of a fog-1(v441) XX animal
at 20°C. The yellow arrow marks the vulva. The uterus is empty and only oocytes are differentiating in the germ line. Three of
them are outlined in yellow. (D) DIC image of a heterozygous fog-1 XO male, showing oocytes outlined in yellow, as well as
sperm (white arrows).

Description
Temperature-sensitive mutations have a wild-type phenotype at the normal (or permissive) temperature and a mutant
phenotype at the restrictive temperature, and are versatile tools for studying gene function. The temperature-sensitive proteins
may exhibit altered stability, failure to fold or aggregate, resistance to proteolysis, or be cleared more quickly because of
partial unfolding, since any of these factors might reduce function at unfavorable temperatures (Poultney et al., 2011). C.
elegans has several ts alleles of critical genes that are helpful for genetic and developmental studies. To determine whether the
temperature-sensitive behavior of mutations in C. elegans and C. briggsae is evolutionarily conserved, we constructed
orthologs of four C. elegans germline ts mutations in C. briggsae using CRISPR-Cas9 (Farbound and Meyer, 2015) or TALEN
(Wood et al., 2011, Wei et al., 2014) mediated gene editing.

The glp-4 gene encodes a Valyl Aminoacyl tRNA Synthetase, essential for populating the germline with sufficient numbers of
cells for gametogenesis (Rastogi et al. 2015). At the restrictive temperature of 25°C, C. elegans glp-4(bn2ts) mutants are
sterile, because they produce very few germ cells, all of which arrest at meiotic prophase (Beanan and Strome 1992). By
contrast, they are self-fertile hermaphrodites at the permissive temperature of 15°C. There is 87% sequence identity between
Cel-GLP-4 and Cbr-GLP-4, and even higher amino acid sequence conservation (96%) within 50 amino acids of the bn2 allele.
This allele alters the Gly 296 residue to aspartic acid, and the orthologous CRISPR mutation in C. briggsae changes Gly 293
to aspartic acid. This ortholog, C. briggsae glp-4(v473) I, is also temperature-sensitive (Fig.1A); much like its C. elegans
ortholog, it results in sterility and germ cells that fail to differentiate into gametes only when grown at 25°C (Fig. 1B). Thus,
Cbr-glp-4(v473ts) provides a valuable new germline-proliferation-defective ts allele for C. briggsae.

FOG-1 is a Cytoplasmic Polyadenylation Element Binding (CPEB) protein that controls the sperm fate in C. elegans (Barton
and Kimble, 1990, Luitjens et al., 2000, Jin et al., 2001a). In fog-1 mutants, germ cells that would normally develop into sperm
instead become oocytes. Furthermore, fog-1 is required for spermatogenesis in both XO males and XXhermaphrodites. The C.
elegans fog-1 allele q253ts is a replacement of Thr 366 by Ile (Jin et al., 2001). It is strongly temperature sensitive, causing XX
animals to become self-sterile at 25°C but not at the permissive temperature of 15°(Barton and Kimble, 1990). Although Cel-
FOG-1 and Cbr-FOG-1 share only 54% sequence identity, they have higher conservation near the site of q253. The Cbr-fog-
1(v442) I allele has an orthologous change (Thr 391 to Ile) that we made using TALEN gene editing. In contrast to C. elegans
q253ts, the Cbr-fog-1(v442) allele causes a loss of function at all temperatures (Fig. 1A). The XX hermaphrodites made only
oocytes (Fig. 1C) and the XO males produced oocytes at both permissive and non-permissive temperatures. As in C. elegans,
this mutation is semidominant in males (Fig. 1D), which implies conservation of how fog-1 is regulated in this sex. Since the
homozygotes are self-sterile, we balanced Cbr-fog-1(v442) with unc-40(v270).

GLP-1 is a notch receptor protein that regulates the mitotic proliferation of germ cells (reviewed by Kimble and Crittenden,
2007). The C. elegans glp-1 alleles bn18 and e2141 are strongly temperature-sensitive, blocking germline proliferation at
restrictive temperatures and causing sterility (Kodoyianni et al. 1992, Mello et al., 1994,). C. elegans glp-1(e2141ts) is a
missense allele that changes arginine 974 to cysteine, and is orthologous to Cbr-glp-1(v438), which we made using
CRISPR/Cas9. Although the C. briggsae allele changes arginine 955 to cysteine, it is not ts, since the mutants appear wild type
at both permissive and restrictive temperatures (Fig. 1A).

We also compared Cel-glp-1(bn18ts) with C. briggsae. The bn18ts allele replaces alanine 1034 with threonine, and is
orthologous to Cbr-glp-1(v429), an alanine 1020 to threonine substitution that we made using CRISPR-Cas9. Unlike bn18ts,
Cbr-glp-1(v429) is not sterile at either the restrictive or permissive temperatures, but instead develops like the wild type.

Although C. elegans glp-1(ts) alleles are sterile at the non-permissive temperature, neither of the C. briggsae orthologues
showed sterility or defective germline development. However, a loss of function allele located nearby in the transcript does
exhibit a Glp phenotype. Cbr-glp-1(v439) is a frameshift mutation caused by the deletion of nucleotide 2867 T in the coding
sequence, near the site of v438. These mutant worms are sterile and display the Glp-1 defective phenotype at all temperatures
(Rudel and Kimble, 2001). Thus, the glp-1 loss-of-function phenotype is conserved between C. briggsae and C. elegans but
not the temperature-sensitivity of key alleles.

Taken together, our findings show that one of the four C. elegans ts alleles we studied had similar behavior in C. briggsae.
However, the other alleles were only ts in one species. Thus, mutations orthologous to known ts alleles can be temperature-
sensitive in other species, and provide a promising guide for generating such alleles, but their behavior often differs. Although
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high levels of structural conservation might suggest that mutations will behave similarly in both species, we found it hard to
predict which alleles will be ts without experimental tests. We suspect that C. elegans and C. briggsae sometimes differ
because some genetic backgrounds are more sensitive to perturbation than others.

Reagents
Reagents

Strain Genotype Phenotype Availability

CB4037 glp-1(e2141) III CGC

DG2389 glp-1(bn18) II. CGC

SS104 glp-4(bn2) I CGC

JK560 fog-1(q253) I CGC

RE1206 Cbr-glp-1(v438) III wildtype Ellis Lab

RE1208 Cbr-glp-1(v439)/ Cbr-lin-39(bh20) III Glp Ellis Lab

RE1186 Cbr-glp-1(v429) III wildtype Ellis Lab

RE1274 Cbr-glp-4(v473ts) I TS Glp Ellis Lab

RE1229 Cbr-fog-1(v442)/Cbr-unc-40(v270) I Fog Ellis Lab
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