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Abstract
Immunofluorescence microscopy is a widely adopted method for studying meiotic prophase in the nematode model organism,
Caenorhabditis elegans. An in-depth examination of specific meiotic processes requires the quantitative analysis of
immunofluorescence images, which often involves the segmentation of individual cells or nuclei. Here, we introduce our
image analysis pipeline to automate significant portions of this task. This pipeline relies on the powerful deep learning model
Cellpose 2.0 to segment cellular structures. To further improve the segmentation accuracy for germline nuclei stained for
chromatin or synaptonemal complexes, we retrained the generalist Cellpose model and integrated our data processing pipeline
into the easy-to-use Cell-ACDC image analysis software. Our pipeline thus makes deep learning-based segmentation of nuclei
in the distal germline of C. elegans accessible for users without coding experience.

Figure 1. Segmentation of germline nuclei in C. elegans using Cell-ACDC and Cellpose:

(A) Orthogonal views of a cropped z-stack of DAPI-stained C. elegans distal germline nuclei (left, imaged with AiryScan 880
microscope) were segmented with the cyto2 model of Cellpose (cyto2, purple, center) or a retrained model using 108 manually
segmented "training" images (germlineNuclei, green, right). The fragmentation of individual nuclei is reduced with the custom
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model. White lines indicate x and y positions shown in the xz and yz orthogonal views. (B) Blurring by a factor of 2.5 (left:
orthogonal views of blurred DAPI images) further improves the segmentation outcome for the cyto2 (center) and the custom
germlineNuclei model (right). (C) The success of training is assessed by calculating the Jaccard index (Stringer et al., 2021;
Pachitariu & Stringer, 2022) for 12 manually segmented "test" images. Jaccard indices for raw images are shown with open
box plots, and with filled box plots for blurred images. Boxes show the interquartile range, medians are indicated by horizontal
lines. Whiskers show smallest and largest value within 1.5 times the interquartile range below the 25th or above the 75th
percentile, respectively. Blurring the data improves the Jaccard index for the cyto2 model (purple). By contrast, a re-trained
custom model (m_0, blue) improves the segmentation of raw data but the Jaccard index is similar to the original cyto2 model
for blurred data. Augmenting the training data improves the segmentation accuracy for both raw and blurred data sets
(germlineNuclei, green). (D) The segmentation pipeline including all pre- and post-processing steps was implemented in Cell-
ACDC (Padovani et al., 2022). Images shown are DAPI-stained C. elegans germline nuclei obtained with a SoRA spinning
disk microscope.

Description
During meiotic prophase I, homologous chromosomes must pair, synapse, and recombine to ensure the correct segregation of
homologs in the first meiotic division. The C. elegans germline offers unique advantages to study these processes since this
tissue contains about 1000 nuclei which are organized in a temporo-spatial manner. This organization allows assessing the
progression through all meiotic prophase I stages in single animals (Kimble & White, 1981; Hillers et al., 2017). However, the
quantification of individual processes often requires labor-intensive and bias-prone manual quantification of specific markers
in immunofluorescence images. To make this task more robust and allow for higher throughput, automated image
quantification techniques are necessary. To this end, the nuclei must first be segmented into independent objects or masks to
automate image quantification. A recent publication demonstrated for the first time a semi-automated image analysis pipeline
for the segmentation and quantification of C. elegans meiotic nuclei (Toraason et al., 2021). However, this pipeline relies on
the use of proprietary software, limiting the use of this tool. At the same time, recent developments in deep learning have
greatly improved image segmentation tasks. In particular, pre-trained models using convolutional neural networks such as
Cellpose (Stringer et al., 2021; Pachitariu & Stringer, 2022) or StarDist (Schmidt et al., 2018; Weigert & Schmidt, 2022) have
significantly simplified the implementation of deep learning-based approaches by non-experts.

In this micropublication, we share our re-trained Cellpose 2.0 model that robustly recognizes distal germline nuclei across
three different imaging platforms. We implemented the full pipeline in Cell-ACDC (Padovani et al., 2022), which provides an
easy-to-use graphical user interface that also simplifies manual quality control and correction of segmentation results.

Generally, segmenting germline nuclei is challenging since the chromatin staining of partially condensed and paired
chromosomes is discontinuous. However, nuclei are easily recognizable by eye for their round shape (Fig. 1A). We use
Cellpose as it has a strong bias for similar round objects (Stringer et al., 2021). Indeed, the pre-trained "cyto2" Cellpose model
already segments many germline nuclei correctly without additional training. However, other nuclei were split into multiple
parts (Fig. 1A, center). We therefore blurred the data prior to segmentation which reduces the fragmentation. Still, the pre-
trained model results in a noticeable amount of segmentation errors (Fig. 1B, center).

To further improve the segmentation accuracy, we re-trained Cellpose with a set of 108 training images of nuclei from distal C.
elegans germlines (Pachitariu & Stringer, 2022). Cellpose reconstructs 3D segmentations from 2D predictions of orthogonal
views (xy, xz, and yz slices, respectively) (Stringer et al., 2021). Thus, we generated ground truth data of 2D orthogonal views
of 3D data. Annotating 2D orthogonal views reduces the amount of ground truth data required since only a small number of
images must be annotated manually rather than entire z-stacks. To generalize our model for different imaging modalities, we
generated ground truth data for fluorescence micrographs of chromatin (DAPI staining) or synaptonemal complex staining
from different imaging modalities (AiryScan, spinning disk confocal microscope with and without SoRA disc, DeltaVision).
Since Cellpose targets objects with a diameter of about 30 pixels (Stringer et al., 2021), we rescaled all training data to a pixel
size of 0.117 µm/pixel, which converts the estimated diameter of a nucleus from 3.5 µm to 30 pixels.

Our re-training improved the Jaccard index from 0.47±0.24 (Fig. 1C, cyto2 model, purple open box plots) to 0.76±0.09 (Fig.
1C, m_0, blue open box plots). However, many nuclei were still not segmented correctly and blurring the data did not improve
the accuracy. The Jaccard indices of both the "cyto2" model (Fig. 1C, purple filled box plots) and the retrained "m_0" model
(Fig. 1C, blue filled box plots) are similar with values of 0.61±0.18 and 0.66±0.11, respectively. To further improve the
segmentation of germline nuclei without the need for generating more ground truth data, we performed basic geometric
transformations (rotation, flipping) and data blurring on the training data. This training data augmentation further improved the
Jaccard index to 0.78±0.07 without blurring and 0.76±0.05 with blurring, respectively (Fig. 1C, germlineNuclei model, green).
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Indeed, this "germlineNuclei" model generated with augmented training data was able to segment most nuclei in images of
distal germlines correctly although some errors still occur in challenging data sets (Fig. 1A-B, right).

To facilitate the use of our segmentation pipeline, we integrated this custom model in Cell-ACDC (Padovani et al., 2022) (Fig.
1D). This software imports microscopy data and resaves the data into easy-to-use tiff-stacks along with its metadata. We
developed a plugin that allows for the segmentation of germline nuclei using these re-saved tiff-stacks. In the graphical user
interface, the user inputs their expected nucleus diameter in µm, while the pixel size of the original microscopy image is pre-
populated automatically from the metadata. This information is used to rescale the microscopy images to a nucleus diameter of
30 pixels, and to calculate the anisotropy in the microscopy dataset. A user-specified blur factor will be used to blur the data
before segmentation by Cellpose with our custom model. To remove incomplete nuclei, the parameter "clean_borders" may be
set to true, which will remove segmentation masks touching the borders of the image stack.

Furthermore, Cell-ACDC includes post-processing steps to filter masks according to their size, solidity, elongation, or
thickness in z (Padovani et al., 2022). Cell-ACDC also allows the user to visualize and correct the segmentation as needed.
This segmentation pipeline for germline nuclei is available by selecting the "Cellpose_germlineNuclei" model within the
segmentation module of Cell-ACDC (see methods and Padovani et al., 2022). We anticipate that this image segmentation will
facilitate the use of (semi-)automated image quantification pipelines in the field.

Methods
Image acquisition

To obtain training data, C. elegans germlines were dissected and stained with DAPI as previously described (Phillips et al.,
2009; Köhler et al., 2017). Germlines were mounted in ProLong Diamond or ProLong Glass. For images of synaptonemal
complexes, living C. elegans animals expressing fluorescent synaptonemal complex markers were mounted on agarose pads
(Rivera Gomez & Schvarzstein, 2018). Z-stack images were acquired on a Zeiss AiryScan 880 (63x oil immersion objective,
NA 1.4) in fast mode, Zeiss AiryScan 980 (63x oil immersion objective, NA 1.4) in 4xSR mode, an Olympus Spinning Disk
microscope (60x oil immersion objective, NA 1.42; or 100x silicone oil immersion objective, NA 1.35) with a 50 µm disk or a
SoRa disk and 3.2x magnification, or a GE DeltaVision Elite microscope (100x oil immersion objective, NA 1.4). AiryScan
images were processed with 3D default (880) or 'low' (980) settings in ZenBlack (880) or ZenBlue (980) software, and
DeltaVision images were iteratively convolved using the SoftWoRx package. We selected and cropped 70 xy, 26 xz, and 24 yz
slices using Fiji (Schindelin et al., 2012) to obtain 2D orthogonal views from z-stacks.

Training Cellpose model

Ground truth masks for the 2D orthogonal views were annotated by one of four different experts using the Cellpose 1.0 or 2.0
graphical user interface (Stringer et al., 2021; Pachitariu & Stringer, 2022). Ground truth data (120 images) was then randomly
split into training (108 images) and test data (12 images) using the scikit-learn 1.3.0 library. All data was rescaled to 0.117
µm/pixel. The cytotorch2_0 model (cyto2) was re-trained using Cellpose 2.0 and the following parameters: n_epochs=500,
momentum=0.9, weight_decay=1e-05, learning_rate=0.05, min_train_masks=2, normalize=True, and rescale=True (Pachitariu
& Stringer, 2022). To improve training efficiency, we also augmented the training data set by random mirroring (horizontal
and/or vertical), random rotations (0-90 degrees), adding noise, rescaling the intensity, and/or blurring the data (0-3.5 blur
factor) using the scikit-image 0.21.0, SciPy 1.10.1 and openCV 4.8.0 libraries. All ground truth data and a jupyter notebook
containing the training script are available at https://github.com/KoehlerLab/Cellpose_germlineNuclei. Note that the
segmentation accuracy using our shared custom model will depend on the similarity of the data to our training data. Therefore,
re-training with additional and user-specific ground truth data may be necessary to obtain the desired segmentation accuracy.

Cell-ACDC

Cell-ACDC software (v1.4.16; Padovani et al., 2022), and its user manual are available at
https://github.com/SchmollerLab/Cell_ACDC. Cell-ACDC is first used to load and (optionally) pre-process the data (Data
preparation in Fig. 1D). This step will also load and save the image metadata. Then, the segmentation module (Segmentation
in Fig. 1D) is launched selecting the "Cellpose_germlineNuclei" model. Selecting this option will automatically download the
necessary files for our custom segmentation pipeline. Alternatively, users can also install the model manually (see Padovani et
al., 2022). Selecting the "Cellpose_germlineNuclei" model in the Cell-ACDC segmentation module will initiate a custom
plugin containing all pre- and post-processing steps (rescaling nuclei of given diameter to 30 pixels, blurring data, removing
masks touching the borders of the image stack) and the Cellpose segmentation using our custom Cellpose model. The plugin
will rescale the data to convert an object of diameter_um (user-specified diameter of the nuclei in µm; default is 3.5 µm) to 30-
pixel diameter using SciPy 1.11.1. The rescaled image will then be blurred by blurfactor (default 2.5 for chromatin staining;
3.5 is recommended for deconvolved images or synaptonemal complex staining) using the SciPy 1.11.1 library. Images are
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then segmented in 3D with Cellpose 2.0 (Stringer et al., 2021; Pachitariu & Stringer, 2022). While the anisotropy parameter
for 3D Cellpose segmentation is calculated automatically from the image metadata, the user can adjust the cellprob_threshold
(we use the default value of 0.0). To remove potential incomplete nuclei from the segmented results, activating the
clean_borders parameter will delete any masks that touch the first or last slice in z, or that are within 2 pixels from the edges
of the stack in x or y. A more detailed instruction on how to use the "Cellpose_germlineNuclei" is given on our GitHub page.
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Extended Data
Description: python scripts, training data, and custom Cellpose model for Cellpose_germlineNuclei. Resource Type: Software.
File: Cellpose_germlineNuclei-1.0_2023.zip. DOI: 10.22002/3yvt7-dm257

References
Hillers KJ, Jantsch V, Martinez-Perez E, Yanowitz JL. 2017. Meiosis. WormBook 2017: 1-43. PubMed ID: 26694509

Kimble JE, White JG. 1981. On the control of germ cell development in Caenorhabditis elegans. Dev Biol 81(2): 208-19.
PubMed ID: 7202837

Köhler S, Wojcik M, Xu K, Dernburg AF. 2017. Superresolution microscopy reveals the three-dimensional organization of
meiotic chromosome axes in intact Caenorhabditis elegans tissue. Proc Natl Acad Sci U S A 114(24): E4734-E4743. PubMed
ID: 28559338

Pachitariu M, Stringer C. 2022. Cellpose 2.0: how to train your own model. Nat Methods 19(12): 1634-1641. PubMed ID:
36344832

Padovani F, Mairhörmann B, Falter-Braun P, Lengefeld J, Schmoller KM. 2022. Segmentation, tracking and cell cycle analysis
of live-cell imaging data with Cell-ACDC. BMC Biol 20(1): 174. PubMed ID: 35932043

Phillips CM, McDonald KL, Dernburg AF. 2009. Cytological analysis of meiosis in Caenorhabditis elegans. Methods Mol
Biol 558: 171-95. PubMed ID: 19685325

Rivera Gomez K, Schvarzstein M. 2018. Immobilization of nematodes for live imaging using an agarose pad produced with a
Vinyl Record. MicroPubl Biol 2018. PubMed ID: 32550397

Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al., Cardona A. 2012. Fiji: an open-source
platform for biological-image analysis. Nat Methods 9(7): 676-82. PubMed ID: 22743772

Schmidt U, Weigert M, Broaddus C, Myers G. 2018. Cell Detection with Star-Convex Polygons. In: Medical Image
Computing and Computer Assisted Intervention – MICCAI 2018, 21st International Conference, Granada, Spain, September
16-20, 2018, Proceedings, Part II. Lecture Notes in Computer Science, 265–273. DOI: 10.1007/978-3-030-00934-2_30

Stringer C, Wang T, Michaelos M, Pachitariu M. 2021. Cellpose: a generalist algorithm for cellular segmentation. Nat
Methods 18(1): 100-106. PubMed ID: 33318659

Toraason E, Adler VL, Kurhanewicz NA, DiNardo A, Saunders AM, Cahoon CK, Libuda DE. 2021. Automated and
customizable quantitative image analysis of whole Caenorhabditis elegans germlines. Genetics 217(3). PubMed ID: 33772283

Weigert M, Schmidt U. 2022. Nuclei Instance Segmentation and Classification in Histopathology Images with Stardist. 2022
IEEE International Symposium on Biomedical Imaging Challenges (ISBIC) : Kolkata, India, 2022, pp. 1-4. DOI:
10.1109/isbic56247.2022.9854534

Funding:

The work was supported by: the European Molecular Biology Laboratory; the EMBL International PhD Programme; the
Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) - 452616889 und 495429102.

Author Contributions: Cristina Piñeiro López: writing - review editing, investigation, resources, validation. Ana Rita
Rodrigues Neves: investigation, validation, writing - review editing, resources. Ivana Čavka: investigation, validation, writing

 

12/11/2023 - Open Access

https://portal.micropublication.org/uploads/58d075618f93702fe8b6%3Cwbr/%3E0bddfe2caf8a.zip
https://doi.org/10.22002/3yvt7-dm257
https://www.ncbi.nlm.nih.gov/pubmed/26694509
https://www.ncbi.nlm.nih.gov/pubmed/7202837
https://www.ncbi.nlm.nih.gov/pubmed/28559338
https://www.ncbi.nlm.nih.gov/pubmed/36344832
https://www.ncbi.nlm.nih.gov/pubmed/35932043
https://www.ncbi.nlm.nih.gov/pubmed/19685325
https://www.ncbi.nlm.nih.gov/pubmed/32550397
https://www.ncbi.nlm.nih.gov/pubmed/22743772
https://doi.org/10.1007/978-3-030-00934-2_30
https://www.ncbi.nlm.nih.gov/pubmed/33318659
https://www.ncbi.nlm.nih.gov/pubmed/33772283
https://doi.org/10.1109/isbic56247.2022.9854534


 

- review editing, resources. Oane Jan Gros: validation, writing - review editing. Simone Köhler: conceptualization,
investigation, software, visualization, writing - original draft, funding acquisition.

Reviewed By: Nicola Silva

WormBase Paper ID: WBPaper00066061

History: Received November 20, 2023 Revision Received December 5, 2023 Accepted December 8, 2023 Published
Online December 11, 2023 Indexed December 25, 2023

Copyright: © 2023 by the authors. This is an open-access article distributed under the terms of the Creative Commons
Attribution 4.0 International (CC BY 4.0) License, which permits unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are credited.

Citation: Piñeiro López, C; Rodrigues Neves, AR; Čavka, I; Gros, OJ; Köhler, S (2023). Segmentation of C. elegans germline
nuclei. microPublication Biology. 10.17912/micropub.biology.001062

 

12/11/2023 - Open Access

https://doi.org/10.17912/micropub.biology.001062

