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Abstract

During C. elegans development, 1090 somatic cells are generated of which 131 reproducibly die, many through apoptosis. The
C. elegans BH3-only gene egl-1 is the key activator of apoptosis in somatic tissues, and it is predominantly expressed in ‘cell
death' lineages i.e. lineages in which apoptotic cell death occurs. egl-1 expression is regulated at the transcriptional and post-
transcriptional level. For example, we previously showed that the miR-35 and miR-58 families of miRNAs repress egl-1
expression in mothers of ‘unwanted' cells by binding to the 3' UTR of egl-1 mRNA, thereby increasing egl-1 mRNA turnover.
In a screen for RNA-binding proteins with a role in the post-transcriptional control of egl-1 expression, we identified EIF-3.H
(ortholog of human eIF3H) and HRPR-1 (ortholog human hnRNP R/Q) as potential activators of egl-1 expression. In addition,
we demonstrate that the knockdown of the eif-3.H or hrpr-1 gene by RNA-mediated interference (RNAi) results in the
inappropriate survival of unwanted cells during C. elegans development. Our study provides novel insight into how egl-1
expression is controlled to cause the reproducible pattern of cell death observed during C. elegans development.
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Figure 1. Genetic screen for activators of egl-1 expression using RNA-mediated interference:
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A) Flowchart of genetic screens for activators of egl-1 expression. (B) Primary (positive) screen for activators of egl-1
expression. After RNAi-mediated knockdown of RBP genes, candidates were identified by screening for a decrease in
GFP::HIS-58 signal in oocytes of animals carrying the reporter P,,i.ogfp::his-58::egl-1 3' UTR (bcSi26). White arrows point
to GFP::HIS-58 signal in oocyte nuclei. (C) Secondary (negative) screen. Nonspecific candidates were eliminated by screening
for a decrease in GFP::HIS-58 signal in embryos of animals carrying the reporter Pj,4i.0gfp::his-58::mai-2 3' UTR (bcSi25).
(D) NSM sister cell (NSMsc) survival screen. (Top) Schematics showing the NSM lineage in wild-type (+/+) and ced-3(717)
animals (Ellis and Horvitz, 1986). The two bilaterally symmetric neurosecretory motoneuron (NSM) neuroblasts (NSMnb)
(left and right) divide ~410 minutes after the first zygotic cleavage (at 20°C), each generating one NSM neuron, which is
programmed to survive, and one NSM sister cell (NSMsc), which is programmed to die (‘unwanted' daughter cell) (Sulston et
al., 1983). In wild-type (+/+) animals, the NSMsc undergoes apoptotic cell death, resulting in one NSM from each NSM
neuroblast. When apoptosis is blocked, the NSMsc inappropriately survives, resulting in an extra ‘NSM-like' cell. The NSM
and the ‘undead’ NSMsc can be identified in the anterior pharynx of L3/L4 larvae using the reporter Py,,_;gfp::his-24 (Yan et
al., 2013). (Bottom) RNAi knockdown of eif-3.H or hrpr-1 causes NSMsc survival. To enhance RNAI efficiency in the NSM
lineage, RNAi experiments were also performed in the nre-1(hd20) lin-15b(hd126) background (Schmitz et al., 2007). The
percentage of NSMsc survival is enhanced in the background of n2427, a weak loss of function mutation of ced-3 (Shaham et
al., 1999). The sample size (n) is shown in the table. The complete genotypes of strains used are provided in Table 1.

Description

Programmed cell death removes unwanted cells and helps shape organs during development (Suzanne and Steller, 2013).
Dysregulation of programmed cell death contributes to several diseases such as cancer, neurodegenerative or autoimmune
diseases (Favaloro et al., 2012). Caenorhabditis elegans (C. elegans) is a powerful model for studying programmed cell death.
Programmed cell death during C. elegans development occurs in a highly reproducible pattern. Sulston and co-workers
discovered that, among 1090 somatic cells generated during the development of a C. elegans hermaphrodite, precisely 131
cells die, many through apoptosis (Conradt et al., 2016; Horvitz, 1999; Sulston and Horvitz, 1977; Sulston et al., 1983). The
process of apoptosis is tightly regulated through a genetic pathway that is evolutionarily conserved from nematodes to
mammals. In C. elegans, this pathway consists of four key components: egl-1, ced-9, ced-4, and ced-3 (Conradt et al., 2016;
Horvitz, 1999). The egl-1 gene is necessary and sufficient for apoptosis and encodes a pro-apoptotic BH3-only protein, EGL-
1, which binds to the anti-apoptotic Bcl-2-like protein CED-9 in unwanted cells. This displaces a dimer of the Apafl-like
protein CED-4 from CED-9, thereby allowing CED-4 to form the apoptosome, which facilitates the autocatalytic activation of
the CED-3 caspase. Activated CED-3 cleaves multiple substrates, ultimately leading to cell death. In contrast to ced-9, ced-4,
and ced-3, which appear to be broadly expressed at least during C. elegans embryogenesis (Chen et al., 2000; Maurer et al.,
2007), egl-1 expression is essentially restricted to cell death lineages (Conradt and Horvitz, 1999; Nehme et al., 2010). Thus,
the spatiotemporal pattern of egl-1 expression and, hence, the control of egl-1 expression is critical for the highly reproducible
pattern of cell death observed during C. elegans development.

egl-1 expression during C. elegans development is regulated at the transcriptional level by lineage-specific transcription
factors that act through specific cis-acting elements upstream or downstream of the egl-1 transcription unit (Conradt et al.,
2016). In addition, egl-1 expression is controlled at the post-transcriptional level by miR-35 and miR-58 family miRNAs that
act through the 3' UTR of the egl-1 mRNA to repress egl-1 expression in mothers of unwanted cells, thereby preventing their
precocious death (Sherrard et al., 2017). Apart from binding sites for miR-35 and miR-58 family microRNAs, the egl-1 3'
UTR contains additional conserved elements (Extended data figure 1). For this reason, we propose that factors other than
microRNAs, such as RNA-binding proteins (RBPs), may contribute to the post-transcriptional regulation of egl-1 expression
and, hence, the highly reproducible pattern of cell death during C. elegans development.

To identify RBPs that promote egl-1 expression, we performed a systematic RNAi (RNA-mediated interference) screen in C.
elegans. To that end, we first generated a comprehensive list of previously reported C. elegans RBPs. An initial list of C.
elegans RBP-encoding genes published by Wang et al. contains 319 genes that were identified by searching for genes
encoding RNA-binding domains (RBDs) (Wang et al., 2009). By searching for additional putative RBDs, Tamburino et al.
increased the number of putative C. elegans RBP-encoding genes from 319 to 887 (Extended data table 1a) (Tamburino et al.,
2013). They included additional putative RBDs and protein classes such as dsRBDs and ribosomal proteins as well as C2H2
zinc finger- and SAM domain-containing proteins. In addition, systematic approaches were employed to experimentally map
mRNA-binding proteins in yeast and mammalian cells by capturing in vivo cross-linked mRNA—protein complexes and by
identifying associated proteins by mass spectrometry (Scherrer et al., 2010; Tsvetanova et al., 2010). In a poly(A)-containing
mRNA-capturing experiment, Matia-Gonzalez et al. identified 594 proteins that interact with polyadenylated mRNAs in C.
elegans (Matia-Gonzélez et al., 2015). These mRNA-binding proteins are encoded by 591 genes (Extended data table 1b).
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However, only a small fraction of these 591 RBP genes (151) overlaps with the 887 RBP genes reported by Tamburino et al.
(Extended data figure 2A). In addition, many previously reported RBPs, such as GLD-3 (Eckmann et al., 2002), MEX-3 and
PUEF-8 (Ariz et al., 2009), are missing from this list of 591 RBP genes, suggesting that the RBPs identified by Matia-Gonzalez
et al. do not represent all RBPs in C. elegans. Thus, we incorporated the lists published by Tamburino et al. and Matia-
Gonzalez et al. and conducted Gene Ontology (GO) and phenotype enrichment analyses (Extended data figure 2B, Extended
data table 1c-1e). Genes with general functions, such as genes encoding tRNA-binding proteins or ribosomal subunits, were
excluded (Extended data table 1d). Interestingly, some RBP genes are also enriched in phenotypes such as ‘cell death variants'
(Extended data table le). These genes were retained in the final list for the RNAi screen. The final RBP compendium
contained 800 genes (Extended data figure 2B, Extended data table 1f) of which 660 genes are represented in the Ahringer
RNAI library (Kamath and Ahringer, 2003; Kamath et al., 2003) (Extended data table 1g). These 660 genes were subjected to
the following RNAI screens for activators of egl-1 expression (referred to as ‘egl-1 activators').

We first screened the 660 genes for potential egl-1 activators using an egl-1 3' UTR reporter (Figure 1B, Primary screen)
(Sherrard et al., 2017). In this reporter, the egl-1 3' UTR is fused to a fusion of the coding sequences of gfp and Histone 2B
gene his-58 (gfp::his-58), and the expression of the resulting fusion gene is driven by the promoter of the gene mai-2, which is
ubiquitously transcribed (Ichikawa et al., 2006). The use of the mai-2 promoter ensures transcription of the reporter in all cells,
which allows us to monitor the impact of the 3' UTR on reporter expression. A single copy of this reporter was inserted into
the C. elegans genome, generating the transgene Py,4i.0gfp::his-58::egl-1 3" UTR (bcSi26) (Sherrard et al., 2017). The
expression of Ppqi.ogfp::his-58::egl-1 3' UTR is repressed in embryos; however, in oocytes, moderate expression is detected
(Figure 1B) (Sherrard et al., 2017). By screening for a decrease in GFP::HIS-58 signal in oocytes, 66 activator candidates were
identified (Figure 1A, 1B, Extended data table 2a). After the primary screen, we conducted a secondary (negative) screen for
activators that are specific to the egl-1 3' UTR. To that end, we used a single copy integration of the mai-2 3' UTR reporter
Pnai-2gfp::his-58::mai-2 3' UTR (bcSi25). This reporter differs from the egl-1 3' UTR reporter (bcSi26) only in its 3' UTR but
it is ubiquitously expressed in all cells (Figure 1C) (Sherrard et al., 2017). By screening for a decrease in GFP::HIS-58 signal
in embryos carrying P,qi2gfp::his-58::mai-2 3' UTR (bcSi25), 41 out of 66 candidates were considered general nonspecific
activators and were excluded from subsequent analyses. The remaining 25 candidates were considered specific for the egl-1 3'
UTR. The identities of the RNAi clones for these candidates were verified through Sanger sequencing. Twenty of them
contained the correct insert (Figure 1A, Extended data table 2b).

The loss of activators of egl-1 is expected to reduce egl-1 activity and result in a cell-death defective (Ced) phenotype, namely,
the inappropriate survival of unwanted cells (Conradt et al., 2016; Nehme and Conradt, 2008). In wild-type embryos, the
NSMsc dies soon after its birth (Figure 1D). When apoptosis is blocked, for example by a strong ced-3 loss-of-function
mutation n717 (Ellis and Horvitz, 1986), the NSMsc survives and forms an NSM-like cell. The NSM and ‘undead' NSMsc can
be visualized by the expression of the reporter Py,,_;gfp::his-24 (Figure 1D) (Yan et al., 2013). RNAi knockdown of eif-3.H or
hrpr-1 (also known as hrp-2) caused a low rate of NSMsc survival in bcSil26 (Py,p1gfp:-his-24) animals (1% for eif-
3.H(RNAi) and 1.9% for hrpr-1(RNAI), respectively) (Figure 1D). Most C. elegans neurons are resistant to RNAi (Firnhaber
and Hammarlund, 2013; Schmitz et al., 2007). The nre-1(hd20) lin-15b(hd126) background has been shown to enhance RNAi
efficiency in neurons (Schmitz et al., 2007). For this reason, we also performed RNAIi in a nre-1(hd20) lin-15b(hd126)
background. In this background, RNAi knockdown of eif-3.H or hrpr-1 caused 1.7% or 2.8% NSMsc survival, respectively
(Figure 1D). By contrast, 0% NSMsc survival is detected in bcSil126 (Pyyp.1gfp::his-24) wild-type (+/+) or bcSi126 (Pg,p
19fp::his-24); nre-1(hd20) lin-15b(hd126) animals that are fed with the control RNAi clone. We also determined NSMsc
survival in the sensitized background of the weak ced-3 loss-of-function mutation n2427 (Shaham et al., 1999). In bcls66
(Peph-19fp: :his-24); ced-3(n2427) animals, the apoptosis pathway is partially inactivated, resulting in 13.7% NSMsc survival
(Figure 1D). In addition, bcls66 (Py,p_;gfp::his-24); ced-3(n2427) animals fed with the control RNAI clone show 14.8%
NSMsc survival. In contrast, eif-3.H(RNAi) and hrpr-1(RNAi) show a significant enhancement of NSMsc survival in bcls66
(Pyph-19fp::his-24); ced-3(n2427) animals (44.1% for eif-3.H(RNAI) and 59.1% for hrpr-1(RNAI), respectively) (Figure 1D).
These data suggest that eif-3.H and hrpr-1 have pro-apoptotic activity and contribute to the activation of apoptosis possibly
through promoting egl-1 expression at the post-transcriptional level.

EIF-3.H is an ortholog of human eIF3H, which regulates the translation of mRNAs (Lee et al., 2015). In zebrafish, it was
shown that e[F3H promotes target gene translation during embryogenesis by targeting specific mRNAs to polysomes
(Choudhuri et al., 2013). In C. elegans, EIF-3.H was reported to promote axon guidance (Schmitz et al., 2007). Our results
show that C. elegans EIF-3.H possibly acts as an activator of egl-1 expression. In the future, it will be interesting to determine
whether EIF-3.H enhances egl-1 mRNA translation by recruiting egl-1 mRNA to polysomes. HRPR-1 (also known as HRP-2)
is an ortholog of human hnRNP R, hnRNP Q (Syncrip) and ACF protein, the essential complementation factor in ApoB
mRNA editing (Kinnaird et al., 2004). C. elegans HRPR-1 contains three RNA-recognition motifs (RRM) and a C-terminal
RG/RGG repeat element, indicating that it has RNA-binding activity (Kinnaird et al., 2004). In addition, HRPR-1 regulates
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mRNA splicing by binding to UCUAUC splicing regulatory elements within target mRNAs, which include unc-52 mRNA and
lin-10 mRNA (Kabat et al., 2009). In mammals, hnRNP R regulates mRNA localization in neurons (Dombert et al., 2014;
Glinka et al., 2010). For example, hnRNP R directs the localization of f-actin mRNA to axons by binding to the 3' UTR of -
actin mRNA (Glinka et al., 2010; Rossoll et al., 2003). hnRNP Q has been reported to regulate mRNA splicing (Chen et al.,
2008) as well as mRNA transport (McDermott et al., 2012), translation (Svitkin et al., 2013) and stability (Grosset et al.,
2000). Therefore, C. elegans HRPR-1 may be involved in several aspects of the lifecycle of egl-1 mRNA. In summary, our
data suggest that, in addition to microRNAs, RBPs are likely to be involved in the control of egl-1 expression at the post-
transcriptional level and the activation of apoptosis during C. elegans development.

Methods
C. elegans strains and maintenance

The strains were maintained at 20°C on nematode growth medium (NGM) plates with E. coli OP50 bacterial lawns (Brenner,
1974), unless otherwise specified. The stains used are listed in Table 1. The mutations and transgenes used were: LG I: bcSi25
[Pynai-2gfp::his-58::mai-2 3" UTR + unc-119(+)] (Sherrard et al., 2017), bcSi26 [P qi-09fp::his-58::egl-1 3" UTR + unc-
LTJr)] (Sherrard et al., 2017); LG III: bcls66 [P_tpﬂgfp::hisi + lin-15(+)] (Yan?al., 2013), bcSil26 [P_tpﬂgfp::@
24::tbb-2 3' UTR + unc-119(+)] (This study), unc-119(ed3) (Maduro and Pilgrim, 1995); LG IV: ced-3(n2427) (Shaham et al.,
1999), ced-3(n717) (Ellis and Horvitz, 1986); LG V: ltIs44 [PpﬁmCherry::PH(PLCldelml) + unc-119(+)] (Audhya et al.,
2005); LG X: nre-1(hd20) (Schmitz et al., 2007), lin-15b(hd126) (Schmitz et al., 2007).

Cloning and plasmid construction

To construct the plasmid pBC1969 (Py,p_;gfp::his-24::tbb-2 3" UTR), a 1.7 kb DNA fragment of the {ph-1 promoter region
including the first exon was first amplified by PCR from C. elegans genomic DNA with primers 5'-
TGCATCGCGCGCACCGTACGTTCTCGCGAATTGCGGCCGAC-3' and 5-GGAGCTGAAAGTACAGAAATTAC-3'.
Next, a 958 bp GFP fragment was amplified by PCR from the plasmid pBC1484 (Sherrard et al., 2017) with primers 5'-
ATTTCTGTACTTTCAGCTCCATGAGTAAAGGAGAAGAACTTTTC-3' and 5'-ACAACAGCGGAATCAGACAT
ACTAGTTCTAGAGCGGCCGCCAC-3'. Then, a 730 bp his-24 fragment was amplified by PCR from C. elegans genomic
DNA with primers 5'-ATGTCTGATTCCGCTGTTGTTG-3' and 5'-TTAGGCCTTGGCGGCTGGCT-3'. Finally, a 371 bp
tbb-2 3' UTR fragment was amplified by PCR from the plasmid pCFJ601 (Frokjaer-Jensen et al., 2012) with primers 5'-
AGCCAGCCGCCAAGGCCTAAATGCAAGATCCTTTCAAGCATTC-3' and 5'-AGAGGGTACCAGAGCTCACC
TAGGTGAGACTTTTTTCTTGGCGGCAC-3'. These fragments have 20 bp overlapping ends and were then assembled into
the backbone pCFJ350 (Frokjaer-Jensen et al., 2012) between the BsiWI and AvrlI restriction sites using the NEBuilder HiFi
DNA Assembly Master Mix (NEB, #E2621L). The Phusion High-Fidelity DNA polymerase (NEB, #M0530L) was used for
PCRs. The insert region of plasmid generated was confirmed by Sanger sequencing.

Microinjection and transgenic animals

To generate the Mos1 transposon-mediated Single-Copy Insertion (MosSCI) (Frokjaer-Jensen et al., 2012; Frokjaer-Jensen et
al., 2008) transgene bcSi126 [Pyyp_1gfp::his-24::tbb-2 3" UTR + unc-119(+)], the universal MosSCI strain EG8080 [oxTi444
unc-119(ed3) I11] was used for germline microinjection and for targeted insertion onto chromosome III. The plasmid pBC1969
[Pyph-19fp::his-24::tbb-2 3" UTR + unc-119(+)] was injected at a concentration of 30 ng/ul with co-injection plasmids 50 ng/pl
PCFJ601 (Pef.3Mosl transposase), 10 ng/pl pGH8 (P,qp.3mCherry::unc-54 3" UTR), 2.5 ng/pl pCFJO0 (Py,,0omCherry::unc-
54 3' UTR), and 5 ng/pl pCFJ104 (Pyyy,0.3mCherry::unc-54 3" UTR).

Genetic screen by RNA-mediated interference

Genetic screen by RNA-mediated interference (RNAi) was performed using the updated Ahringer RNAi feeding library
(Kamath and Ahringer, 2003; Kamath et al., 2003) distributed by Source BioScience Ltd (https://sourcebioscience.com). This
library covers ~87% of the currently annotated C. elegans protein-coding genes. Bacterial RNAi clones carrying the constructs
that express relevant dsRNAs were cultured in 100 pL. of LB medium containing 100 pg/mL carbenicillin in a 96-well plate at
37°C overnight. 10 pL of each bacteria culture was seeded into individual wells of a 12-well NGM plate containing 6 mM
IPTG and 100 pg/mL carbenicillin as described previously (Rolland et al., 2019). The seeded plates were incubated at 20°C
overnight in the dark to induce dsRNA expression before use.

In the primary screen, the egl-1 3' UTR reporter P,,4i.ogfp::his-58::egl-1 3' UTR (bcSi26) was used to screen for a decrease in
gfp::his-58 expression. Ten L3 larvae carrying Pm(Efp::fu's_—SB::ggl—_l 3" UTR (bcSi26) were transferred into each well of the
12-well NGM plate seeded with bacterial RNAi clones. After the animals were fed with bacterial RNAIi clones for 48 hours,
the expression of gfp::his-58 in nuclei of oocytes was scored. In wild-type animals, this reporter is repressed in embryos but
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moderately expressed in oocytes and germ cells. If gfp::his-58 expression was reduced in oocytes after the knockdown of an
RBP gene, this RBP was considered an activator candidate of egl-1 expression. In this screen, gfp RNAi and control RNAi
were used as the positive control and negative control, respectively.

In the secondary (negative) screen, the mai-2 3' UTR reporter Py,qi.0gfp::his-58::mai-2 3' UTR (bcSi25) was used to exclude
non-specific regulators by screening for a decrease in gfp::his-58 expression in 4-cell stage embryos. Candidates that reduced
the expression of the mai-2 3' UTR reporter after their knockdown were excluded. The identities of bacterial RNAi clones
were confirmed by Sanger sequencing of the insert in the RNAi construct.

The percentage of NSMsc survival after RNAi-mediated knockdown of RBP genes was determined in the following way.
Three L3 stage animals carrying the NSM reporter Py,_;gfp::his-24 were transferred to NGM plates seeded with bacterial
RNAI clones. After three days, L.3/1.4 stage F1 progenies were scored for extra NSM-like cells, which are found in the anterior
pharynx and labelled by the reporter Py, ;gfp::his-24 (Yan et al.,, 2013). For RBP genes that cause larval arrest upon
knockdown, L1/L.2 stage F1 progeny was scored. In this screen, the control RNAi clone was used as a negative control.

Reagents
Table 1. List of strains used in this study.

Strain Genotype Source

EG8080 oxTi444 unc-119(ed3) 111 CGC

MD3203 bcls66 111; ced-3(n717) IV (Yan et al., 2013)
MD3437 bcls66 111, ItIs44 V (Chakraborty et al., 2015)
MD3712 bcls66 111; ced-3(n2427) 1V; Itls44 V (Chakraborty et al., 2015)
MD3851 bcSi25 T; unc-119(ed3) 111 (Sherrard et al., 2017)
MD3852 bcSi26 T; unc-119(ed3) 111 (Sherrard et al., 2017)
MD4700 bcSi126 unc-119(ed3) 111 This study

MD4704 bcSi126 unc-119(ed3) 111; nre-1(hd20) lin-15b(hd126) X This study
Acknowledgements:
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Extended Data
Description: List of RBP genes in C. elegans. Resource Type: Dataset. File: Extended data table 1. RBP genes in C.
elegans 20240102.xlsx. DOI: 10.22002/fjp7q-n1732

Description: egl-1 activator candidates. Resource Type: Dataset. File: Extended data table 2. egl-1 activator
candidates 20240102.xlsx. DOI: 10.22002/cdeer-7ah33

Description: Conserved features in the egl-1 3' UTR. The C. elegans egl-1 3' UTR contains conserved elements in comparison
to those of three other Caenorhabditis species. (www.ebi.ac.uk/Tools/msa/clustalo). . Resource Type: Dataset. File: Extended
data figure 1 egl-1 3' UTR 20240209.jpg. DOI: 10.22002/nhsx6-qv793

Description: Analysis of C. elegans RNA-binding proteins. (A) Overlap analysis of RNA-binding protein (RBP)-encoding
genes reported by Tamburino et al.,, (2013) and Matia-Gonzalez et al., (2015). (B) Pipeline for RBP gene analyses,
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characterization, and selection. . Resource Type: Dataset. File: Extended data figure 2 RBP analyses 20240209.jpg. DOI:
10.22002/yspxf-ram42
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