

The P granule antibody KT3 recognizes epitopes in both PGL-1 and PGL-3

Brennan M Danlasky¹, Mario T Martinez¹, Madeline Cassani¹, Devavrat Bodas¹, Andrea Putnam^{1,2}, Geraldine Seydoux^{1§}

¹Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA

²Current Affiliation: Department of Biomolecular Chemistry, University of Wisconsin–Madison, Madison, Wisconsin, United States

[§]To whom correspondence should be addressed: gseydoux@jhmi.edu

Abstract

The KT3 antibody is a commercially available antibody that recognizes the P granule protein <u>PGL-3</u> (Takeda et al., 2008). Using immunostaining and western blotting of purified peptide fragments, we show that KT3 recognizes both <u>PGL-3</u> and its paralog <u>PGL-1</u>, likely through a shared epitope in the intrinsically disordered region.

Figure 1. The P granule antibody KT3 recognizes epitopes in both PGL-1 and PGL-3:

2/16/2024 - Open Access

A. PGL proteins

Diagram showing different domains in <u>PGL-1</u>, <u>PGL-2</u> and <u>PGL-3</u> and <u>MUSCLE</u> alignment of the <u>PGL-1</u> and <u>PGL-3</u> intrinsically disordered regions (not including the RGG repeats). Regions of homology between <u>PGL-1</u> and <u>PGL-3</u> are highlighted in red and may correspond to regions recognized by KT3. The <u>PGL-2</u> IDR did not show significant stretches of homology and thus was excluded from this analysis.

B: Immunostaining analyses

2-cell stage embryos (top row) and dissected germlines (bottom row) of indicated genotype probed with KT3 (purple).

C: Western analyses

Coomassie-stained gel (left panel) and western blot of same probed with KT3 antibody (right panel). Recombinant proteins were purified as fusions with maltose binding protein (MBP) and cleaved to release MBP and untagged PGL. Arrows point to bands recognized by the KT3 antibody. Bands of higher-than-expected molecular weight likely correspond to uncleaved MBP fusions. <u>PGL-3</u> is full length, MBP is maltose binding protein. The next five lanes are <u>PGL-3</u> segments as indicated (Refer to diagram A for amino acid coordinates). <u>PGL-1</u> is full length <u>PGL-1</u>.

Description

The KT3 antibody and other antibodies obtained via antigen subtraction are widely used reagents for studying *C. elegans* (Takeda et al. 2008, Hanazawa et al. 2011, Schmidt et al., 2021). Antigen subtraction is a two round hybridoma production and screening method designed to raise monoclonal antibodies against random, relatively low abundance proteins present in a tissue lysate. The KT3 antibody was originally characterized (Takeda et al., 2008) as an antibody against <u>PGL-3</u>, a 75kD P granule protein (Kawasaki et al., 2004). In immunostaining experiments in embryos, KT3 recognizes P granules and an unidentified (<u>pgl-3</u> independent) epitope in muscle (Takeda et al., 2008).

C. elegans has three PGL paralogs, each with two conserved N-terminal dimerization domains and a less conserved intrinsically disordered region (IDR) (Fig. 1A, Kawazaki et al., 2004). The <u>PGL-1</u> and <u>PGL-3</u> IDRs share some homology with each other, but not with the <u>PGL-2</u> IDR. In immunostaining of embryos, we noticed that KT3 recognizes P granules in both wild-type and <u>pgl-3(bn104)</u> knockout embryos, suggesting that KT3 might recognize another P granule epitope besides <u>PGL-3</u> (Fig. 1B). Consistent with this view, no P granule staining was observed in <u>pgl-3(bn104);pgl-1(ax4559</u>) germlines, suggesting that KT3 also recognizes <u>PGL-1</u>, but not <u>PGL-2</u>.

To further define KT3 specificity, we tested KT3 against recombinant <u>PGL-1</u>, <u>PGL-3</u>, and <u>PGL-3</u> segments partially purified from *E. coli* (Fig. 1C). The KT3 antibody recognized full length <u>PGL-1</u> and <u>PGL-3</u>, as well as the <u>PGL-3</u> IDR and a truncated <u>PGL-3</u> lacking the RGG domain. KT3 did not recognize <u>PGL-3</u> segments lacking the IDR.

We conclude that KT3 recognizes P granule proteins <u>PGL-1</u> and <u>PGL-3</u>, likely through a shared epitope in the IDR.

Methods

CRISPR generation of <u>PGL-1</u> deletion

JH4230 *pgl-1(ax4559*); *pgl-3(bn104*) was generated via CRISPR/CAS9 genome editing as described in Paix et al., 2017.

Protein purification

MBP::6XHis::TEV::<u>PGL-3</u> was expressed in Rosetta (DE3) cells in terrific broth + ampicillin (100 µg/mL) to an OD600 of ~1.0 at 37°C and induced with 1 mM isopropyl β-D-1-thiogalactopyranoside at 16° C for 16 hr. Cells were resuspended in Buffer A (25 mM HEPES pH 7.4, 500 mM NaCl, 0.4 M L-Arginine, 20% (vol/vol) glycerol, 1 mM DTT) with added protease inhibitors, 5 µg/mL RNase A (USB), 0.25 U/µL RNase I (Ambion), lysed by sonication, spun at 13,000 rpm for 15 min. Lysates were filtered and incubated with amylose resin (New England Biolabs). The resin was washed 3X with Buffer B (25 mM HEPES pH 7.4, 20% (vol/vol) glycerol, 1 mM DTT, 500 mM NaCl). Protein was eluted in Buffer B + 20 mM Maltose. 6XHis::TEV::5XArg tag protease (expression plasmid obtained from addgene (PRK793) and purified as described (Tropea, Cherry, and Waugh 2009) was added at a ratio of ~ 1:5 mg TEV:PGL and incubated O/N at 16° C. After TEV cleavage MBP::6XHis and 6XHis::TEV::5XArg protease were removed by passing the cleavage reaction through a 5 mL HisTRAP column (GE Healthcare). The flowthrough containing cleaved, untagged <u>PGL-3</u> was diluted to ~150 mM NaCl with Buffer B0 (containing 0 mM NaCl) and immediately loaded onto a HeparinTrap column (GE Healthcare). Proteins were eluted with a gradient of 150 to 1000 mM NaCl. <u>PGL-3</u> mutants lacking the c-terminal RGG domain did not bind to the heparin column and were collected from the flowthrough and applied to a 5 mL HiTrap Q column (GE Healthcare). Proteins were eluted with a

2/16/2024 - Open Access

gradient of 150 to 1000 mM NaCl. Protein containing fractions were concentrated and flash-frozen in small aliquots in liquid nitrogen and stored at -80°C. Protocol adapted from Folkmann et al. 2021 and Putnam et al., 2019.

RNAi

L4 larvae were placed on IPTG-induced lawns of <u>HT115</u> bacteria bearing L4440-based plasmid for 24 hours at 25°C and then shifted to 20°C for one hour to avoid temperature dependent changes on P granules. The RNAi clone for <u>pgl-1</u> came from the genomic RNAi feeding library (Medical Research Council Gene Services, Source BioScience, Nottingham, UK; Kamath et al., 2003).

Immunostaining

For embryo immunostaining, adult worms were placed into M9 on poly-l-lysine (0.01%)-coated slides and pressed under a coverslip to extrude embryos. For adult germline immunostaining, adult worms were placed in M9 buffer with 10 mM levamisole before worms were sliced open to extrude germlines. For both embryos and adult germlines, slides were laid on aluminum blocks pre-chilled by dry ice for more than 5 min. Coverslips were promptly removed to freeze-crack and permeabilize embryos and germlines. Both were then incubated overnight in methanol at -20° C. Prior to antibody treatment, fixed germlines were treated with 4% paraformaldehyde for one hour. Slides were blocked in 0.1% PBS Tween with 0.1% BSA for 1 hour, followed by an overnight incubation with 200 µL of KT3 primary antibody (1:100, DSHB). The following day, samples were incubated with a secondary antibody at room temperature for two hours (Jackson ImmunoResearch Labs Cat# 115-605-068 1:500). They were then mounted with Vectashield Antifade Mounting Media with DAPI.

Spinning Disk Confocal imaging

Imaging *C. elegans* embryos and germlines was carried out using a custom-built inverted Zeiss Axio Observer with CSU-W1 SoRa spinning disk scan head (Yokogawa), 4x relay lens (Yokogawa), fast piezo z-drive (Applied Scientific Instrumentation), and an iXon Life 888 EMCCD camera (Andor). Samples were illuminated with 405/637 nm solid-state laser (Coherent), using a 405/640 transmitting dichroic (Semrock) and a 624-40/692-40/525-30/445-45 nm bandpass filter (Semrock). Images were taken using Slidebook software using a 40x-1.3NA objective (Zeiss), with a 4x relay lens (Yokogawa) for embryos, and a 1x relay lens for germlines.

Western Blot

Recombinant proteins were diluted to 1 μ M prior to denaturation and loading onto a 4–12% Bis-Tris pre-cast gels (Bio-Rad Hercules, CA). Western blot transfers onto PVDF membranes were run for 1 hour at 4°C. Membranes were blocked for 30 minutes in PBS with 5% milk. The KT3 antibody (DSHB) was diluted by 1:100 and incubated overnight. The secondary incubation occurred for two hours at room temperature (Thermofisher Scientific cat# 62-6720 1:4000, Jackson labs).

PGL-1 and PGL-3 alignment

The <u>PGL-1</u> and <u>PGL-3</u> C-termini were aligned by running amino acid sequences through MUSCLE (Edgar, 2004), and then visualized via JALVIEW (Waterhouse et al. 2009).

Acknowledgements:

We would like to thank Helen Schmidt for her mentorship. The KT3 antibody was purchased through DSHB (<u>https://dshb.biology.uiowa.edu/</u>)

References

Edgar RC. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32(5): 1792-7. PubMed ID: <u>15034147</u>

Folkmann AW, Putnam A, Lee CF, Seydoux G. 2021. Regulation of biomolecular condensates by interfacial protein clusters. Science 373: 1218-1224. DOI: <u>DOI: 10.1126/science.abg7071</u>

Hanazawa M, Yonetani M, Sugimoto A. 2011. PGL proteins self associate and bind RNPs to mediate germ granule assembly in C. elegans. J Cell Biol 192(6): 929-37. PubMed ID: <u>21402787</u>

Kamath RS, Fraser AG, Dong Y, Poulin G, Durbin R, Gotta M, et al., Ahringer J. 2003. Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature 421(6920): 231-7. PubMed ID: <u>12529635</u>

Kawasaki I, Amiri A, Fan Y, Meyer N, Dunkelbarger S, Motohashi T, et al., Strome S. 2004. The PGL family proteins associate with germ granules and function redundantly in Caenorhabditis elegans germline development. Genetics 167(2): 645-61. PubMed ID: <u>15238518</u>

2/16/2024 - Open Access

Paix A, Folkmann A, Seydoux G. 2017. Precision genome editing using CRISPR-Cas9 and linear repair templates in C. elegans. Methods 121-122: 86-93. PubMed ID: <u>28392263</u>

Putnam A, Cassani M, Smith J, Seydoux G. 2019. A gel phase promotes condensation of liquid P granules in Caenorhabditis elegans embryos. Nat Struct Mol Biol 26(3): 220-226. PubMed ID: <u>30833787</u>

Schmidt H, Putnam A, Rasoloson D, Seydoux G. 2021. Protein-based condensation mechanisms drive the assembly of RNA-rich P granules. Elife 10. PubMed ID: <u>34106046</u>

Takeda K, Watanabe C, Qadota H, Hanazawa M, Sugimoto A. 2008. Efficient production of monoclonal antibodies recognizing specific structures in Caenorhabditis elegans embryos using an antigen subtraction method. Genes Cells 13(7): 653-65. PubMed ID: <u>18498356</u>

Tropea JE, Cherry S, Waugh DS. 2009. Expression and Purification of Soluble His6-Tagged TEV Protease. Methods in Molecular Biology, High Throughput Protein Expression and Purification : 297-307. DOI: <u>doi.org/10.1007/978-1-59745-196-3 19</u>

Waterhouse AM, Procter JB, Martin DM, Clamp M, Barton GJ. 2009. Jalview Version 2--a multiple sequence alignment editor and analysis workbench. Bioinformatics 25(9): 1189-91. PubMed ID: <u>19151095</u>

Funding:

Funding was provided by the National Institutes of Health (G.S.: R37HD037047; B.D.: T32GM148383). G.S. is an investigator of the Howard Hughes Medical Institute.

Author Contributions: Brennan M Danlasky: writing - review editing, writing - original draft, conceptualization, data curation, formal analysis, investigation, methodology, resources, software, supervision, validation, visualization. Mario T Martinez: data curation, investigation, resources, validation, writing - review editing. Madeline Cassani: data curation, formal analysis, investigation, resources, validation, writing - review editing. Devavrat Bodas: conceptualization, data curation, formal analysis, investigation, methodology, resources, supervision, validation, writing - review editing. Andrea Putnam: conceptualization, data curation, formal analysis, investigation, data curation, formal analysis, investigation, writing - review editing. Geraldine Seydoux: conceptualization, data curation, formal analysis, funding acquisition, investigation, methodology, project administration, resources, supervision, validation, writing - original draft, writing - review editing.

Reviewed By: Carolyn Phillips

Nomenclature Validated By: Daniela Raciti

WormBase Paper ID: WBPaper00066473

History: Received January 25, 2024 **Revision Received** February 9, 2024 **Accepted** February 13, 2024 **Published Online** February 16, 2024 **Indexed** March 1, 2024

Copyright: © 2024 by the authors. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International (CC BY 4.0) License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Citation: Danlasky, BM; Martinez, MT; Cassani, M; Bodas, D; Putnam, A; Seydoux, G (2024). The P granule antibody KT3 recognizes epitopes in both PGL-1 and PGL-3. microPublication Biology. <u>10.17912/micropub.biology.001137</u>