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Abstract
We recently discovered that disrupting phospholipid biosynthesis by eliminating the Ino2/4 transcriptional regulator impairs
endoplasmic reticulum (ER)-associated degradation (ERAD) in Saccharomyces cerevisiae, but the mechanism is unclear.
Phosphatidylcholine deficiency has been reported to accelerate degradation of Sec61 translocon beta subunit Sbh1 and ERAD
cofactor Cue1. Here, we found that, unlike targeted phosphatidylcholine depletion, INO4 deletion does not destabilize Sbh1 or
Cue1. However, we observed altered electrophoretic mobility of Sbh1 in ino4Δ yeast, consistent with phospholipid-responsive
post-translational modification. A better understanding of the molecular consequences of disrupted lipid homeostasis could
lead to enhanced treatments for conditions associated with perturbed lipid biosynthesis.
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Figure 1. Effect of INO4 deletion on electrophoretic migration and degradation of ER proteins:

(A) ERAD substrates analyzed in this study. Sbh1-HA is a tail-anchored, single-pass transmembrane protein with the HA
epitope in the ER lumen (Shyu et al., 2019). Cue1-HA is a single-pass transmembrane protein with the HA epitope in the
cytosol (Shyu et al., 2019). Deg1*-Sec62 (Runnebohm et al., 2020) is an engineered protein containing, in sequence, Deg1* (a
modified version of the N-terminal 67 amino acids of transcriptional regulator MATα2), a FLAG epitope (F), the two-
transmembrane protein Sec62, and two copies of the Staphylococcus aureus Protein A (2xProtA). Upon membrane insertion of
the two transmembrane segments of Sec62, a portion of the N-terminal tail loops into and persistently engages the translocon
and becomes N-glycosylated. (B, D, E) Yeast of the indicated genotypes were transformed with plasmids encoding Sbh1-HA,
Cue1-HA, or Deg1*-Sec62 (or an empty vector control) and subjected to cycloheximide chase and western blot to detect the
ER proteins of interest and the Pgk1 loading control. Means of percent protein remaining of 3-5 biological replicates are
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plotted. Error bars represent standard error of the mean. ns, not significant. *, p < 0.05, **, p < 0.01. (C) Side-by-side
comparison of electrophoretic mobility of Sbh1-HA in ino4Δ and opi3Δ yeast.

Description
Many diseases are characterized by defects in phospholipid homeostasis (Arendt et al., 2013; Bargui et al., 2021; Kim et al.,
2016; Kosicek & Hecimovic, 2013; Li et al., 2006; Mitsuhashi & Nishino, 2011), and a growing body of literature functionally
links phospholipid metabolism and protein degradation (Halbleib et al., 2017; Ho et al., 2020; Hwang et al., 2023; Jonikas et
al., 2009; Promlek et al., 2011; Shyu et al., 2019; Thibault et al., 2012; To et al., 2017; Volmer et al., 2013; Xu & Taubert,
2021). It is therefore important to understand how cellular lipid composition impacts protein dynamics. We recently identified
INO4 in a screen for genes required for endoplasmic reticulum (ER)-associated degradation (ERAD) in Saccharomyces
cerevisiae (Turk et al., 2023). INO4 encodes one subunit of the heterodimeric Ino2/4 master transcriptional regulator of
phospholipid biosynthetic genes (Ambroziak & Henry, 1994; Henry et al., 2012). INO4 deletion stabilizes a broad panel of
ERAD substrates of both major yeast ERAD ubiquitin ligases (Hrd1 and Doa10) without globally impairing the ubiquitin-
proteasome system (Turk et al., 2023). The precise molecular mechanism(s) underlying ERAD disruption by INO4 deletion
remain(s) to be elucidated.

Loss of INO4 broadly disrupts lipid homeostasis, as Ino2/4 promotes expression of genes required for synthesis of
phosphatidylcholine, phosphatidylinositol, and phosphatidylethanolamine, among other phospholipids. Rescue of the ino4Δ
ERAD defect by supplementation with phospholipid metabolites and intermediates whose uptake or synthesis are controlled
by Ino2/4-regulated genes confirmed the degradation impairment is linked to altered phospholipid metabolism (Turk et al.,
2023). Genetic disruption of several lipid biosynthetic pathways (including those specifically responsible for
phosphatidylcholine, phosphatidylinositol, and sterol synthesis) impairs ERAD, indicating ER protein quality control is highly
sensitive to alterations in membrane composition (Turk et al., 2023).

We found loss of the phospholipid methyltransferase Opi3 (required for phosphatidylcholine synthesis) significantly stabilizes
Deg1*-Sec62, a model translocon-clogging ERAD substrate of the Hrd1 ubiquitin ligase (Turk et al., 2023). Conversely,
others have observed OPI3 deletion accelerates Doa10-dependent ERAD of a panel of transmembrane ER proteins, including
Sec61 translocon beta subunit Sbh1 and ERAD cofactor Cue1 (Figure 1A) (Shyu et al., 2019). We reasoned that depletion of
either Sbh1 or Cue1 might explain the profound ERAD defect in yeast lacking Ino4.

We therefore performed cycloheximide chases and western blots to analyze degradation of Sbh1-HA and Cue1-HA in ino4Δ
yeast. As previously reported, we observed destabilization of the tail-anchored, single-pass, transmembrane Sbh1-HA in
phosphatidylcholine-deficient opi3Δ yeast (Figure 1B). By contrast, loss of INO4 did not alter Sbh1-HA degradation kinetics.
However, a modified, higher molecular-weight species of Sbh1-HA reproducibly accumulated in ino4Δ yeast, and to a more
modest extent in opi3Δ yeast, relative to wild type yeast (Figure 1B, 1C). We speculate slowed migration reflects
phosphorylation, as multiple proteomic analyses have identified three phosphorylated residues of Sbh1 (Lanz et al., 2021;
MacGilvray et al., 2020; Swaney et al., 2013; Zhou et al., 2021). Additional analyses will be required to definitively
characterize the nature of Sbh1 modification. We did not observe destabilization of the single-pass transmembrane Cue1-HA
in ino4Δ yeast (Figure 1D). On the contrary, Cue1-HA was marginally stabilized in ino4Δ yeast, consistent with broad ERAD
impairment by this mutation. Finally, we reproduced our previous observation that loss of INO4 stabilizes and impedes post-
translational modification of the model translocon-clogging Hrd1 substrate, Deg1*-Sec62 (Figure 1E).

As INO4 deletion does not destabilize either HA-tagged Sbh1 or Cue1, our results suggest the ERAD defect in Ino2/4-
deficient yeast is not due to depletion of either protein. A precise mechanism by which altered phospholipid biosynthesis in
ino2Δ or ino4Δ yeast impacts ERAD remains elusive. We previously observed that INO4 deletion does not globally inhibit ER
translocation (Turk et al., 2023). However, phospholipid-sensitive alteration in post-translational modification of a translocon
subunit might subtly or selectively perturb translocation in a manner that compromises ERAD. Indeed, recent work indicates
phosphorylation alters the conformation of the Sbh1 N-terminus and promotes translocation of a small subset of ER-targeted
proteins, modestly impacting the ER proteome (Barbieri et al., 2023; Yadhanapudi et al., 2024). Loss of Ino2/4 broadly
impacts expression of genes regulating lipid homeostasis. It is therefore likely that deletion of INO2 or INO4 impacts ER
physiology in myriad ways, including altered membrane fluidity, disrupted protein-protein interactions, changes in post-
translational modifications, and perturbations in structure, localization, or function of ER-resident proteins.

Methods
Cycloheximide chase and yeast cell lysis. Yeast were cultured in Synthetic Defined (SD) growth medium (2% dextrose,
0.67% yeast nitrogen base, 0.002% adenine, 0.004% uracil, 0.002% arginine, 0.001% histidine, 0.006% isoleucine, 0.006%
leucine, 0.004% lysine, 0.001% methionine, 0.006% phenylalanine, 0.005% threonine, and 0.004% tryptophan), lacking uracil
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or leucine (for plasmid selection). Cycloheximide chase experiments were conducted as described (Buchanan et al., 2016). In
brief, 2.5 OD600 units (1 OD600 unit is equivalent to 1 mL of yeast at an OD600 of 1.0) per time point were harvested by
centrifugation and resuspended in fresh medium. Cycloheximide was added to a final concentration of 250 µg/mL. 2.4-OD600
aliquots were collected 0, 30, and 60 minutes following cycloheximide addition and transferred to stop solution (10 mM
sodium azide, 0.25 mg/mL bovine serum albumin). Proteins were extracted using the alkaline lysis method (Kushnirov, 2000;
Watts et al., 2015).

Western blotting. Western blotting was conducted as described (Watts et al., 2015). Proteins were separated by SDS-PGE and
transferred to polyvinylidene difluoride (PVDF) membranes at 20 V for 1 hr at 4°C. Membranes were blocked in Tris-buffered
saline (TBS; 50 mM Tris, 150 mM NaCl) with 5% skim milk powder for 1 hr at room temperature or overnight at 4°C.
Antibody incubations were conducted for 1 hr at room temperature in TBS supplemented with 1% Tween 20 (TBS/T) and 1%
skim milk powder. Each antibody incubation was followed by three five-minute, room-temperature washes with TBS/T. To
detect HA-tagged proteins (Sbh1-HA and Cue1-HA), mouse anti-HA.11 primary antibody (Clone 16B12; BioLegend) was
used at a dilution of 1:1,000. To detect Pgk1, mouse anti-Pgk1 primary antibody (Clone 22C5D8; LifeTechnologies) was used
at a dilution of 1:20,000. Primary antibody incubations were followed by incubation with AlexaFluor-680-conjugated rabbit
anti-mouse secondary antibody (LifeTechnologies) at a dilution of 1:20,000. The C-terminal tandem Staphylococcus aureus
Protein A tags on Deg1*-Sec62 were directly detected by AlexaFluor-680-conjugated rabbit anti-mouse secondary antibody
(LifeTechnologies) at a dilution of 1:20,000. Membranes were imaged using the Li-Cor Odyssey DLx Imaging System and
quantified using ImageStudio software (Li-Cor). To determine percent protein remaining, the ratio of signal intensity for each
protein of interest (Sbh1-HA, Cue1-HA, or Deg1*-Sec62) to the signal intensity of Pgk1 at each time point was compared to
this ratio at 0 minutes for each culture.

Statistical analysis. Statistical analyses were performed using GraphPad Prism (version 10). For experiments depicted in
Figures 1B and 1E, means of percent protein remaining at 60 minutes were evaluated by one-way ANOVA followed by Holm-
Šídák multiple comparison tests. For the experiment depicted in Figure 1D, means of percent remaining at 30 or 60 minutes
were evaluated by unpaired, two-tailed t-tests.

Reagents
Yeast strains used in this study.

Name Genotype

VJY474 MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 ino4Δ::kanMX4

VJY476 (alias BY4741) MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0

VJY511 MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 hrd1Δ::kanMX4

VJY1071 MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 opi3Δ::kanMX4

All strains are congenic with BY4741 (Tong et al., 2001).

Plasmids used in this study.

Name Alias Description Source or
Reference

pVJ27 pRS316 Empty vector (CEN, URA3, AmpR)
(Sikorski &
Hieter,
1989)

pVJ40 pRS315 Empty vector (CEN, LEU2, AmpR)
(Sikorski &
Hieter,
1989)
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pVJ317
Deg1*-Sec62 driven by MET25 promoter in pRS316 backbone (CEN, URA3, AmpR).
Deg1*-Sec62 is Deg1* (first 67 amino acids of MATα2 with F18S and I22T mutations),
FLAG epitope, Sec62, and two copies of Staphylococcus aureus Protein A.

(Rubenstein
et al., 2012)

pVJ667 pGT181 Cue1-HA driven by CUE1 promoter in pRS315 backbone (CEN, LEU2, AmpR) (Shyu et al.,
2019)

pVJ668 pGT183 Sbh1-HA driven by SBH1 promoter in pRS315 backbone (CEN, LEU2, AmpR) (Shyu et al.,
2019)
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