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Abstract
C. elegans uses chemosensation to recognize a variety of odors, many of which are released by bacteria, the major food source
of C. elegans. Specific amphid sensory neurons are known to detect different odorants. Here we show that the AWCOFF

neuron detects the attractive odorant 1-butanol. Because few odorants that are specifically recognized by the AWCOFF neuron
have been identified, we hope that the identification of this additional odorant will facilitate studies of the role of the AWCOFF

neuron in odor detection and discrimination.
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Figure 1. AWCOFF neuron important for attraction of C. elegans to 1-butanol:

(A) Wildtype N2 chemotaxis to dilutions of 1-butanol, n ≥ 8 assays. (B) 1-butanol (1:100) chemotaxis behavior of genetic
mutants affecting olfactory neuron cell fates or function. Compared to N2 by ANOVA with Dunnett, n ≥ 6 assays. (C) N2, nsy-
1(ky542) (two AWCON neurons), and nsy-7(tm3080) (two AWCOFF neurons) to different dilutions of 1-butanol compared to
N2 by ANOVA with Dunnett for each dilution, n ≥ 6 assays. (D) Partial rescue of 1-butanol (1:100) chemotaxis in tax-4(p678)
mutants expressing tax-4 cDNA in AWC (ceh-36* promoter). All genotypes compared with ANOVA with Tukey n ≥ 10
assays. For all panels, error bars are standard error of means (SEM). ****P < 0.0001, ***P < 0.001, **P < 0.01, and *P <
0.05.
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Description
C. elegans uses chemosensation to detect odors in its environment. Bacteria which are the major food source of C. elegans
release many of these odors. Several chemosensory neurons located in the head or amphid of the worm detect different volatile
organic chemicals and each chemosensory neuron expresses many different olfactory receptors. The primary chemosensory
neurons for detecting attractive odorants are AWA and AWC and for repulsive odorants are AWB, ASH and ADL (reviewed in
Ferkey et al., 2021). However, the neurons involved in detecting many odorants are still unknown. Here, we examine the
neurons detecting 1-butanol. The odorant 1-butanol is found in in the headspace (volume of air above bacteria) of the
following bacterial species: E. coli HB101, Flavobacterium sp. JUb43, and Providencia sp. JUb39, as well as the culture
media LB without bacteria (Worthy et al., 2018a).

First, we examined the chemotaxis behavior of wildtype N2 animals to 1-butanol. As previously shown (Bargmann et al.,
1993), C. elegans was attracted to 1-butanol at a range of dilutions, 1:10, 1:100 and 1:1000 (Fig. 1A). Second, to determine
which neurons are involved in detecting 1-butanol, we tested C. elegans strains that have mutations in genes that affect the cell
fate or sensory function of specific chemosensory neurons in 1-butanol chemotaxis assays. Overall, we found that mutations
that affected the function or cell-fate of AWC neurons exhibited defective chemotaxis behavior to 1-butanol. The mutant ceh-
36, which lacks AWC neurons (Lanjuin et al., 2003; Koga and Ohshima, 2004), had defective chemotaxis to 1-butanol (Fig.
1B). The mutant ceh-36 also affects ASE taste neurons (Chang et al., 2003; Koga and Ohshima 2004), but the ASE neurons
are unlikely to be involved because the che-1 mutant, which lacks ASE neurons (Uchida et al., 2003), exhibited wildtype
chemotaxis towards 1-butanol. Other mutants affecting different chemosensory neurons exhibited wildtype 1-butanol
chemotaxis. Specifically, the odr-7 mutant which affects AWA cell fate (Sengupta et al., 1994) and lim-4 mutant which affects
AWB cell fate (Sagasti et al., 1999) resembled wildtype animals in their chemotaxis to 1-butanol. Additionally, the mutant
osm-9 which lacks sensory function of ASH, ADL and AWA neurons (Tobin et al., 2002) also showed strong chemotaxis for
1-butanol. These results suggest that AWC neurons are important for 1-butanol chemotaxis.

Next, we examined the role of AWC neurons in chemotaxis to 1-butanol. The AWC neuron class contains two neurons,
AWCON and AWCOFF, that are functionally distinct and detect different sets of overlapping odorants. AWCON detects 2-
butanone, 2-heptanone, and acetone, AWCOFF detects 2,3-pentanedione, and both detect benzaldehyde, isoamyl alcohol, and
other odors (Troemel et al., 1999; Wes and Bargmann, 2001; Zhang et al., 2016; Worthy et al., 2018b; Ferkey et al., 2021).
Animals mutant for the gene nsy-1 have cell fate transformation that results in the elimination of the AWCOFF neuron,
resulting in two AWCON neurons (Sagasti et al., 2001). The nsy-1 mutants were defective in 1-butanol chemotaxis indicating
that AWCOFF is likely important for attraction to 1-butanol (Fig. 1B). Consistent with this, the nsy-7 mutant, which lacks the
AWCON neuron and has two AWCOFF neurons (Chuang et al., 2007; Lesch et al., 2009), retained wildtype chemotaxis for 1-
butanol (Fig. 1B). We tested the nsy-1 and nsy-7 mutants at two additional dilutions (1:10 and 1:1000) of 1-butanol (Fig. 1C).
The nsy-1 mutant was defective at all dilutions; the nsy-7 mutant was no different from wildtype N2 at all dilutions. Thus,
having two AWCOFF neurons does not seem to increase chemotaxis to 1-butanol. Taken together, these results suggest that
AWCOFF is necessary for chemotaxis to 1-butanol.

Sensory transduction in many sensory neurons, including AWC, requires a cyclic nucleotide-gated channel (TAX-4) (Komatsu
et al., 1996). The tax-4 mutant was also defective for 1-butanol chemotaxis (Fig. 1D). Attraction to 1-butanol was partially
restored by tax-4 expression under the ceh-36* promoter which is selective for AWC neurons (ceh-36* is a modified ceh-36
promoter with 12 bp removed) (Fig. 1D) (Chang et al., 2003; Koga and Ohshima 2004). This result provides evidence that
AWC is important for chemotaxis to 1-butanol. The partial rescue may indicate that the expression level of tax-4 in the
AWCOFF neuron in the strain was not sufficient for complete rescue or that other neurons in addition to AWC are involved in
chemotaxis to 1-butanol.

In conclusion, we have found that the AWCOFF is important for the detection of 1-butanol. We hope this observation will
facilitate studies of AWCOFF involvement in odor detection and discrimination.

Methods
Chemotaxis assays

Chemotaxis assays were performed using 10 cm square chemotaxis plates as described (Tsunozaki et al., 2008). In brief, assay
agar was 2% agar, 1mM MgSO4, 1mM CaCl2, 5mM phosphate buffer [pH 6.0]. Chemical dilutions were in ethanol at the
concentrations indicated in figure legends. 2 μL of diluted chemical was pipetted on one side of the plate, 2 μl of ethanol on
the other side, and 2 μL of 1M sodium azide on both sides to anaesthetize animals that reached odor or ethanol sources. Adult
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animals were washed twice in S-basal buffer and one time in water, 50–200 animals were placed at the center of chemotaxis
plate, plate was covered with lid, and the distribution of animals counted after 1 hour. The lim-4 (ky403) mutant animals move
more slowly and were counted after 20 hours.

Statistical analysis

Means represent data pooled from assays run on at least two different days with at least 6 replicates. Error bars in all figures
are standard error of means. The data were analyzed using statistics described in figure legend with GraphPad Prism v10.3 for
Mac (GraphPad Software, San Diego, California USA).

Reagents
C. elegans strains

Strain Genotype Available from

N2 wildtype CGC

CX6339 ceh-36(ky640) Bargmann Lab

PR680 che-1(p680) CGC

CX3937 lim-4(ky403) CGC/Bargmann Lab

CX4 odr-7(ky4) CGC/Bargmann Lab

CX10 osm-9(ky10) CGC/Bargmann Lab

CX13078 tax-4(p678) Bargmann Lab

CX9190 nsy-1(ky542) Bargmann Lab

CX10232 nsy-7(tm3080) Bargmann Lab

CX15111 tax-4(p678); kyEx5046 (AWC (ceh-36*p1)::tax-4 sl2::GFP and elt-2::GFP) Bargmann Lab

1ceh-36*p is genomic sequence upstream of ceh-36 gene, ctcacatccatctttctggcgactgtttca…gcctgcccccgcatgcacaa with 12bp
removed, gaagaagcctta.

Acknowledgements: We thank Dr. Cori Bargmann for strains. Some strains were provided by the CGC, which is funded by
NIH Office of Research Infrastructure Programs (P40 OD010440).
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