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Abstract
COVID-19 is caused by SARS-CoV-2, a highly transmissible and pathogenic RNA betacoronavirus. Developing small-
molecule antiviral inhibitors of the SARS-CoV-2 papain-like protease (PLpro) is advantageous due to the enzyme's role in
processing viral polyproteins and disrupting host immune sensing. Given the structural and functional similarities between
PLpro and human deubiquitinases (DUBs), small-molecule inhibitors are frequently counter-screened for off-target activity
using a panel of human DUBs. Through X-ray crystallography, DALI structural comparisons, and in silico analysis, a high-
quality crystal structure of SARS-CoV-2 PLpro enabled the identification of the closest structural human homologues of PLpro.
Among the 27 human DUBs identified, USP46 and USP12 displayed the greatest structural similarity to PLpro, with alignment
scores below 0.45 and RMSD values of 3.0 Å or less. Additionally, binding sites on ubiquitin-specific protease (USP46) and
USP12, ancillary to the active site residues, share high sequence identity to the PLpro substrate binding sites that are often
engaged by the most potent PLpro inhibitors. These findings offer a strong basis for choosing anti-targets and serve as a
foundation for designing selective small-molecule PLpro inhibitors.
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Figure 1. Identifying the closest structural human homologues of SARS-CoV-2 PLpro:

(A) The structure of SARS-CoV-2 PLpro (9BF8.pdb) is represented by a green, pink, and red ribbon, alongside the binding
poses of the most potent small-molecule inhibitors of SARS-CoV-2 PLpro. The inhibitors (thick tube representations) include
GRL-0617 (orange, 7CJM.pdb), Compound 7 (blue, 8EUA.pdb), XR8-24 (black, 7LBS.pdb), and Jun12682 (purple,
8UOB.pdb), which interact with binding sites (pink) that are ancillary to active site residues Cys111, His272, and Asp286
(red). The relevant binding sites are known as the blocking loop (BL2) (Gly266-Gly-271), BL2 groove (Pro247, Pro248,
Pro299, Gly266), and the Alpha-cleft (Asp164-Glu167) binding sites (pink). (B) Radar plot illustrating structural alignment
results of related coronavirus (CoV) PLpro from SARS-CoV, MERS-CoV, HKU1-CoV, murine hepatitis virus (MHV), and the
catalytic domains of 27 human deubiquitinases (DUBs). Alignment scores (green) lower than 0.6 indicate a good alignment,
while scores greater than 0.6 indicate a failure of structural alignment calculation and insufficient structural similarity for a
meaningful alignment. RMSD (Å) (purple) is the distance between superpositioned atoms, calculated based only on the
residues that have been successfully aligned. The plot highlights the closest human structural homologues of SARS-CoV-2
PLpro, which are ubiquitin-specific protease 46 (USP46) and USP12 (red data blocks). (C) Binding site amino acid sequence
alignment and Alignment scores of unrelated human structural protease homologues of SARS-CoV-2 PLpro (Created in
BioRender. Alhomoudi, A. (2025) https://BioRender.com/gpsv9cp). (D) The figure illustrates the structural superposition of
binding sites for USP46 (blue, 5L8H.pdb) and SARS-CoV-2 PLpro (green, 9BF8.pdb), emphasizing the BL2 groove, Alpha-
cleft, and BL1, a secondary blocking loop present on USP46 in place of the BL2 groove.
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Description
Despite the global availability of SARS-CoV-2 protease inhibitor regimens, there remains a critical need to enhance their
pharmacological properties, particularly in terms of oral bioavailability, metabolic stability, and specificity (Eng et al., 2022;
Jiang et al., 2023; Shimizu et al., 2023). The Papain-like protease (PLpro) is essential for the replication of human
coronaviruses (hCoVs) as it processes polyproteins translated from viral RNA into functional nonstructural proteins (NSPs). In
addition to processing viral polyproteins, hCoV PLpro directly facilitates the evasion of host immune responses by cleaving
ubiquitin and the ubiquitin-like interferon-stimulated gene 15 (ISG-15) from host protein conjugates (Thiel et al., 2003;
Barretto et al., 2005; Linder et al., 2007; Linder et al., 2005; Shin et al., 2020). Therefore, inhibiting PLpro offers a promising
approach to reducing viral replication and boosting antiviral immunity.

Deubiquitination and deISGylation are essential regulatory mechanisms in many biological processes, including NF-ĸB
signaling following host innate immune system activation during viral infection (Hochstrasser, 2000; Song & Li, 2021). Seven
human Deubiquitinase (DUB) subfamilies function to cleave ubiquitin and ubiquitin-like adducts from substrate proteins
(Balakirev et al., 2003; Burnett et al., 2003; Evans et al., 2003; Gan-Erdene et al., 2003; Verma et al., 2002; Wilkinson, 1997;
Yeh et al., 2000). The ubiquitin-specific protease (USP) subfamily has raised particular interest due to its presence in different
eukaryotic organisms and the varied functions ascribed to this subfamily of diverse proteases in normal and pathological
conditions (Quesada et al., 2004). In 2005, around the same time that Quesada and colleagues identified 22 novel human
USPs, the first crystal structure of the SARS-CoV PLpro was elucidated (2FE8.pdb) (Ratia et al., 2006). Structural similarity
screening through the entire Protein Data Bank (PDB) identified two significant human structural homologues of SARS-CoV
PLpro: USP14 and HAUSP7 (USP7) (Ratia et al., 2006). Since then, tens of thousands of crystal structures have been
deposited into the PDB, and the emergence of the deadly MERS-CoV in 2012 and SARS-CoV-2 in 2019 has accelerated the
structure-based drug design (SBDD) of protease inhibitors.

The outbreak of SARS-CoV in 2002 facilitated the development of the naphthyl methyl amine core from GRL-0617 as an
inhibitor for PLpro (Ghosh et al., 2009). Since then, GRL-0617 has been repurposed against SARS-CoV-2 PLpro, and several
potent analogs have been optimized using SBDD, including Compound 19, Compound 7, XR8-24, and Jun12682 (Ratia et al.,
2008; Sanders et al., 2023; Shan et al., 2021; Tan et al., 2023) (Fig. 1A). These potent antiviral compounds (Enzymatic IC50 ≥
0.09 μM, Antiviral EC50 ≥ 0.42 μM) exhibit comparable binding poses, interacting with residues involved in ubiquitin and
ISG-15 recognition, as evidenced by various hCoV PLpro X-ray co-crystal structures with ubiquitin (4MM3.pdb, 4RF1.pdb,
6XAA.pdb) and ISG-15 (6XA9.pdb, 6BI8.pdb, 5TL6.pdb). Notably, the flexible “blocking loop” (BL2) (Gly266-Gly271), the
hydrophobic BL2 groove (Pro247, Pro248, Pro299, Gly266), and the rigidifying Alpha cleft (Asp164-Glu167) of PLpro, which
are ancillary to the catalytic triad (Cys111, His272 & Asp286), improve inhibitor potency upon engagement. Although the
efficacy of these compounds has been confirmed, the primary focus is now on enhancing pharmacological and drug-like
attributes, including specificity and off-target activity.

Currently, the rationale for selecting specific USP panels for in vitro analysis to evaluate the specificity of PLpro inhibitors and
their off-target activity remains unclear. In the development of GRL-0617, Ratia et al. counter-screened against USP7, USP18,
UCH-L1, and UCH-L3 (Ratia et al., 2008). In the development of Compound 19, Shan et al. counter-screened against USP36,
USP14, USP8, USP7, USP2, and related DUBs UCH-L1, SNEP1, OTUB-1, ATAXIN3, and AMSH (Shan et al., 2021).
Sanders et al. screened Compound 7 against USP2c, USP4, USP7, USP8, USP15, USP30, and UCH-L1 (Sanders et al., 2023).
Lastly, XR8-24 and Jun12682 were counter-screened against only USP7 and USP14 (Tan et al., 2023). SBDD efforts would
greatly benefit from a clearly defined panel of human DUBs, facilitating a more rational counter-screening of lead PLpro

inhibitors. To systematically address this concern, we identified a panel of the closest structural human homologues of SARS-
CoV-2 PLpro to counter-screen potential drug candidates

We crystallized the SARS-CoV-2 PLpro enzyme (9BF8.pdb), and this high-quality crystal structure served as the query
structure. The 9BF8 PDB Validation Report contains relevant data collection and refinement statistics. The diffraction data
were collected by the Life Sciences Collaborative Access Team (LS-CAT) using the NSLS-II 17-1 AMX beamline at the
Brookhaven National Laboratory, resulting in a 1.85 Å resolution data set. The resulting refined model had an overall B-factor
of 34.1 Å2, allowing proper main and side chain modeling. The phased and refined structure resulted in a final Rwork of
17.75% (Rfree = 20.00%), with zero Ramachandran and sidechain outliers.

A heuristic search of the PDB was performed using the DALI server (ekhidna2.biocenter.helsinki.fi/dali) to compare the
coordinates of the query protein structure with all protein chains deposited in the PDB. The catalytic domains of 27 USPs were
identified to have significant DALI Z-scores, where a higher score indicates statistical significance in similarity. DALI Z-
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scores for identified USPs ranged from 9.5 to 13.8, with most having similar scores (Data Set Identifying Structural
Homologues of SARS-CoV-2 PLpro). SARS-CoV-2 PLpro sequence identity of the identified USPs ranged from 9% to 16%.
Other hits include SARS-CoV PLpro and related hCoV PLpro from MERS-CoV, hCoV-HKU1, and the murine hepatitis virus
(MHV), which had Z-scores ranging from 32 to 44 and SARS-CoV-2 PLpro sequence identities ranging from 28-83%.

Unlike the DALI server analysis, alignment metrics, such as the Alignment score in Schrödinger Maestro Suite release 2024-2
(version 14.0.134), provide a more comprehensive evaluation, offering a detailed and holistic view of protein similarity based
on sequence and structure. In combination with the 27 USP catalytic cores identified by DALI, MERS-CoV PLpro, hCoV-
HKU1 PLP2, and Murine Hepatitis Virus (MHV) PLP2 were processed using the Maestro Protein Preparation Workflow to
prepare structures, primarily to fill in missing side chains, and then subjected to the Protein Structure Alignment tool (Sastry et
al., 2013). As expected, related CoV PLpro had the best alignment scores to SARS-CoV-2 PLpro, ranging from 0.021 to 0.3,
respectively (Fig. 1B). The catalytic domains of USP46 and USP12 exhibited the highest structural homology with SARS-
CoV-2 PLpro, with alignment scores below 0.6 and RMSD values of ~3 Å. The alignment scores of USP46 (0.368) and USP12
(0.384) were similar to the alignment score of the MHV PLpro (0.361), highlighting the high similarity between the viral and
human proteases (Fig. 1C). The catalytic domains of USP16, USP8, USP9X, USPL1, USP1, USP54, and USP7 are also
significantly close structural homologues of PLpro with alignment scores of less than 0.459 and RMSD of less than 3.37 Å.
Nonetheless, USP16 lacks essential catalytic residues and is categorized as a non-protease homologue in accordance with the
MEROPS database classification (Fig. 1C). This designation rules USP16 out as a viable PLpro off-target. Furthermore,
USPL1 and USP54 exhibit low PLpro sequence identity in the BL2 and Alpha-cleft regions. Lastly, USP7’s active site requires
ubiquitin substrate binding for the catalytic Cys to align into an active conformation, and its BL2 is in an open state when
HAUSP is unbound to ubiquitin (Hu et al., 2002), rendering it an irrational anti-PLpro off-target. Overall, USP46, USP12, and
USP9X are the closest human structural homologues to PLpro (Superposition of USP46, USP12, and USP9X to SARS-CoV-
2 PLpro) and serve as the most rational off-targets for testing the specificity of small-molecule PLpro inhibitors. Specifically,
USP46 is notable for its superior alignment score, low RMSD value, and high sequence/structural identity with the ancillary
binding sites of PLpro (e.g., BL2) (Fig. 1D).

The methodology described can identify anti-target panels for developing antiviral compounds. The findings presented herein
provide a more transparent and economical array of human proteins suitable for counter-screening compounds. This
advancement consequently facilitates the development of potent and selective antiviral small-molecule PLpro inhibitors.

Methods

PLpro Cloning, Expression, and Purification

The gene encoding the full-length SARS-CoV-2 PLpro (isolate Wuhan-Hu-1 NC_045512.2, pp1ab aa 1564–1878) with N-
terminal His6-SUMO-cleavable tag was cloned into pMCSG7 (Midwest Center for Structural Genomics) vector following the
Ligation Independent Cloning (LIC) procedure (Stols et al., 2002). Whole Plasmid Sequencing was performed by
Plasmidsaurus using Oxford Nanopore Technology with custom analysis and annotation. The pHis6-SUMO vector containing
the PLpro gene was transformed into Rosetta2 E. coli cells, plated onto Amp+ agar plates, and incubated overnight at 37°C.
Single colonies were cultured overnight in LB media with 100 µg/mL Amp at 37°C until OD600 = 1.0. The temperature was
then lowered to 20°C for 1 hour, followed by the induction of protein expression with 0.4 mM IPTG. The next day, cell pellets
were harvested by centrifugation and frozen at -80°C. Frozen cell pellets were lysed by sonication in lysis buffer (25 mM Tris-
HCl, pH 7.5, 150 mM NaCl, 1 mM DTT) containing 10 µg/mL lysozyme, 0.5 µg/mL Aprotinin, and 0.05 µg/mL Leupeptin.
The lysate was clarified by centrifugation and loaded onto a 5 mL Ni-NTA resin equilibrated with Ni column wash buffer (25
mM Tris HCl, pH 7.5, 150 mM NaCl). Bound His6-SUMO-PLpro was eluted with elution buffer (25 mM Tris-HCl, pH 7.5,
150 mM NaCl, and 300 mM imidazole). Fractions containing His6-SUMO-PLpro were pooled and exchanged into SUMO
dialysis buffer (20 mM Tris-HCl, pH 7.5, 250 mM NaCl, 1 mM DTT). A 1:100 molar ratio of ULPL1 (SUMO-specific
protease) to PLpro was incubated at 4°C overnight to cleave the His6-tag. The reaction was loaded onto a Ni-NTA resin re-
equilibrated with 25 mM Tris-HCl, pH 7.5, and 150 mM NaCl to remove the tag and the SUMO-specific protease. Cleaved
PLpro eluted first, followed by gel filtration. PLpro fractions were pooled, concentrated, and frozen in liquid nitrogen for
storage at -80°C in S75 buffer (20 mM Tris-HCl, pH 7.5, 250 mM NaCl, 1 mM DTT). A Bradford assay using BSA as a
standard monitored protein yield at each step.

Crystallization and structure determination of SARS-CoV-2 PLpro
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The crystals of SARS-CoV-2 PLpro were grown using the sitting drop vapor diffusion method against a 300 µL reservoir
solution at 4°C. The PLpro crystals were formed by mixing 1-2 µL of 18.7 mg/mL protein with 1 µL of reservoir solution
containing 0.1 M Tris buffer (pH 7.0), 1 M sodium phosphate monobasic monohydrate (NaH2PO4), 1 M potassium phosphate
dibasic (K2HPO4), and 3% w/v sucrose. Crystals formed over 1-2 days, reaching dimensions of 0.5-0.8 mm with octahedral
and dodecahedral external symmetries. Full-sized crystals were harvested after one week. They were carefully transferred into
a cryoprotectant consisting of mother liquor and 25% (v/v) glycerol before being flash-frozen in liquid nitrogen. The samples
were subsequently shipped to the NSLS-II 17-1 AMX beamline at Brookhaven National Laboratory for diffraction data
collection. Reflections were integrated and scaled using XDS and AIMLESS via Xia2 (P. Evans, 2006; Kabsch, 2010; Winter,
2010). Phases were calculated through molecular replacement using PHASER within the PHENIX software package (Adams
et al., 2010; Liebschner et al., 2019; McCoy et al., 2007) for molecular structure determination by employing a monomeric
SARS-CoV-2 PLpro structure (8FWN.pdb) as the search model. Automated model building and multiple rounds of refinement
were conducted using PHENIX Autobuild, WinCoot, and PHENIX Refine (Afonine et al., 2012; Afonine et al., 2018; Echols
et al., 2012; Emsley, Lohkamp, Scott, & Cowtan, 2010; Terwilliger et al., 2008). The X-ray crystal structure of SARS-CoV-2
PLpro has been deposited in the PDB (9BF8.pdb), and the deposition validation file is also provided.

Structure Similarity Analysis

The query crystal structure PDB coordinates (9BF8.pdb) were uploaded into the DALI protein structure comparison server to
perform a heuristic PDB search. Identified structures were prepared and aligned using the Protein Preparation Workflow and
Protein Structure Alignment tool, employing the query crystal structure as reference residues using Schrödinger Maestro Suite
release 2024-2 (version 14.0.134).

Reagents

Plasmid Description

pHis6-SUMO-
PLpro

Custom bacterial vector with an ampicillin resistance marker for regulated expression of SARS-CoV-2 PLpro

with a cleavable His6-SUMO tag.
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