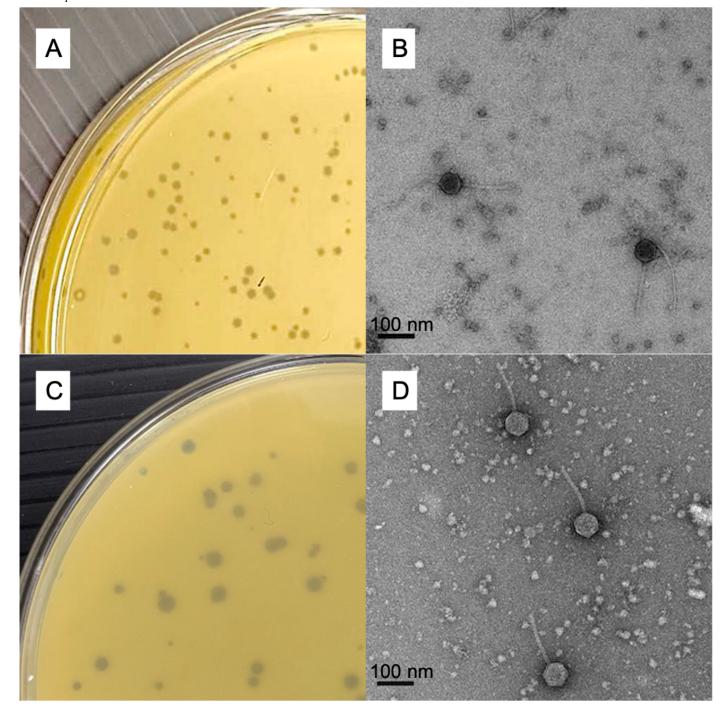


# Genome Sequences of *Microbacterium foliorum* Phages BouleyBill and Carostasia, isolated in France

Christophe Regeard<sup>1§</sup>, Florence Constantinesco-Becker<sup>1</sup>, Anne Lopes<sup>1</sup>, Ana A Arteni<sup>1</sup>, Malika Ouldali<sup>1</sup>, Laura Pieri<sup>1</sup>, Monique Auberdiac<sup>2</sup>, Daniel Delaruelle<sup>2</sup>, Kevin Tambosco<sup>2</sup>, Hakima Abes<sup>2</sup>, Clément Almeida-Monge<sup>3</sup>, Félix Benard<sup>3</sup>, Lucie Boucard<sup>3</sup>, Elsa Chaouat<sup>3</sup>, Juliette Charazac<sup>3</sup>, Caroline Comte<sup>3</sup>, Marie Coutard<sup>3</sup>, Téo Denis<sup>3</sup>, Clarisse Deschamps--Martin<sup>3</sup>, Erwin Filloux<sup>3</sup>, Anastasia Gaultier<sup>3</sup>, Madeleine Gautheret<sup>3</sup>, Hafsa Harrat<sup>3</sup>, Océane Hill<sup>3</sup>, Mattéo Jalmain <sup>3</sup>, Cécile Jolivet<sup>3</sup>, Diane Le Tyrant<sup>3</sup>, Sarah Lopez<sup>3</sup>, Cléa Medin<sup>3</sup>, Camille Outtier<sup>3</sup>, Mélissa Roze<sup>3</sup>, Maria Rubio-Espinal<sup>3</sup>, May-Blue Zeni<sup>3</sup>, Ombeline Rossier<sup>1§</sup>

### **Abstract**

Bacteriophages BouleyBill and Carostasia, exhibiting siphovirus morphology, were isolated in France. Both infected *Microbacterium foliorum* strain NRRL B-24224. Their 39,215-bp and 40,393-bp genomes were assigned to subclusters EA4 and EA10, respectively, widening for the first time the known geographical distribution of these subclusters to Europe.


<sup>&</sup>lt;sup>1</sup>Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France

<sup>&</sup>lt;sup>2</sup>Faculté des Sciences d'Orsay, Université Paris-Saclay, Orsay, France

<sup>&</sup>lt;sup>3</sup>Ecole Universitaire de Premier Cycle, Université Paris-Saclay, Orsay, France

<sup>§</sup>To whom correspondence should be addressed: christophe.regeard@universite-paris-saclay.fr; ombeline.rossier@universite-paris-saclay.fr





 $Figure \ 1. \ Plaque \ and \ particle \ morphologies \ for \ Bouley Bill \ (A \ and \ B) \ and \ Carostasia \ (C \ and \ D):$ 

(A and C) Clear plaques observed in the LB agar overlay supplemented with M. foliorum strain NRRL B-24224 and 1 mM CaCl2 after 24 h at 30°C. (B and D) Negative staining of phages with 2% wt/vol uranyl acetate observed with a Tecnai Spirit microscope operated at 100 kV (TFS) and equipped with a K2 Base 4kx4k direct electron detection camera (Ametek/Gatan). The magnification used was 19,800× with a pixel size of 2.5 Å at the level of the specimen. Scale bar: 100 nm.

## **Description**

Bacteriophages are abundant and highly diverse viruses that infect bacteria. While approximately 600 different phages infecting the Gram-positive bacterium *Microbacterium foliorum* have been characterized, none have yet been isolated in Europe, leaving their geographic distribution and genetic diversity underexplored (Russell and Hatfull 2017; Jacobs-Sera et al. 2020; Milhaven et al. 2023)(see https://www.phagesdb.org, accessed on 1 December 2024).

Here, we report on the isolation of phages BouleyBill and Carostasia in France (Table 1). Compost or grass sprigs, respectively, were incubated for 1h in LB (5 g/L NaCl; 5 g/L yeast extract; 10 g/L tryptone), shaking at 30°C. Following centrifugation for 15 min at 4000xg, the supernatants were



passed through a 0.22-µm filter and plated with top agar (LB 0.75% agar) supplemented with 1 mM CaCl2 and M. foliorum strain NRRL B-24224 (Russell et al. 2019). BouleyBill and Carostasia formed clear plaques with diameter ranges of 0.5-1 mm and 0.5-2 mm, respectively, after 24h at 30°C. They were further purified through two rounds of single plaque picking and plating (Fig. 1). Negative-staining transmission electron microscopy showed that both phages exhibit siphovirus morphology (Fig. 1). BouleyBill capsids were 55 ( $\pm 3$ ) nm in diameter and tails were 128 ( $\pm 7$ ) nm long (n = 13), while Carostasia capsids measured 60 ( $\pm 1$ ) nm and tails 134 ( $\pm 5$ ) nm (n = 24).

Phage DNA was extracted from high-titer lysates using the PCI/SDS protocol (https://phagesdb.org/media/workflow/protocols/pdfs/PCI\_SDS\_DNA\_Extraction\_2.2013.pdf). A library was prepared using the NEB Ultra II kit and sequenced using an Illumina Miseq instrument (v3 reagents). De novo assembly was performed with Newbler v2.9 as previously described (Russell 2018) and further checked with Consed v.29 (Gordon et al. 1998). The results are listed in Table 1. Based on gene content similarity of at least 35% to phages in the Actinobacteriophage database, phagesDB, both phages were assigned to cluster EA, but to different subclusters (Pope et al. 2017; Russell and Hatfull 2017), i.e. EA4 (containing 11 genomes with BouleyBill) and EA10 (6 genomes including Carostasia).

Gene prediction was performed using DNAmaster v5.23.6 (Pope and Jacobs-Sera 2018), which incorporates Glimmer v3.02 (Delcher et al. 2007) and Genmark v2.5p (Besemer and Borodovsky 2005). Auto-annotation was refined with Aragorn v1.2.41 (Laslett 2004), tRNAscan-SE v2.0 (Chan et al. 2021), Starterator v1.2 (http://phages.wustl.edu/starterator/), and Phamerator v579 (Cresawn et al. 2011). Start sites were selected based on gene length, minimal gaps or overlaps, RBS scores, and BlastP alignment, with Starterator used for further validation. Functional annotation was done with BlastP using NCBI nonredundant or actinobacteriophage databases (e values < 0.001) (Altschul et al. 1990; Russell and Hatfull 2017), and with HHpred (Soding et al. 2005) using databases PDB\_mmCIF70\_16\_Aug, Pfam-A\_v37, Uniprot-Swissprot-viral70\_3\_Nov\_2021, and NCBI\_Conserved\_Domain(CD)\_v3.19. Transmembrane domains were predicted using DeepTMHMM v1.0.24 (Hallgren et al. 2022). All software were used with default settings. BouleyBill and Carostasia contained 55 and 63 predicted protein-coding genes, with no putative functional prediction for 50% and 57% of identified genes, respectively.

As previously described for phages belonging to subcluster EA4 (Jacobs-Sera et al. 2020), phage BouleyBill carries a tRNA gene and its tail assembly chaperones are produced through a putative programmed translational -1 frameshift, features that were not identified in Carostasia. BouleyBill contains two genes downstream of the major capsid protein gene, while Carostasia has only one, which differs from the two in BouleyBill. Using Phamerator, a comparison of genomic regions 18,629–21,723 bp in BouleyBill (in particular genes 24, 28 and 29) and 18,678–21,406 bp in Carostasia (genes 23, 26 and 28) shows that the endolysin and two other genes are not conserved. From position 30,564 in BouleyBill and 30,625 in Carostasia to the genome ends, only six genes encode proteins that are homologous between the two phages. Taken together, this report constitutes the first description of *Microbacterium foliorum* phages discovered in Europe. The overall relatedness of BouleyBill and Carostasia with fifteen phages isolated in Northern America or the Caribbean suggests that phages from subclusters EA4 and EA10 have a wide geographical distribution.

| DD 11 4 T 1 .*    |                    | 1                        | C 1        | D 1 D'11 10                    |
|-------------------|--------------------|--------------------------|------------|--------------------------------|
| Table I Isolatio  | n seamencing and   | genome characteristics ( | of nhages  | BouleyBill and Carostasia      |
| Tubic 1, isolutio | ii, ocquencing unc | genome enalucteristics ( | or pringes | Boule y Bill tilla Cul ostasia |

| Phage<br>name | Sample<br>collection<br>site (GPS<br>coordinates)   | Sample<br>type     | Isolation<br>method | Approx.<br>Shotgun<br>coverage<br>(fold) | No. of<br>150-bp<br>single-<br>end<br>reads | Genome<br>accession | SRA<br>accession | Genome<br>length<br>(bp) | Genome<br>ends         |      | No. of<br>protein-<br>coding<br>genes | No. of<br>tRNAs |      |
|---------------|-----------------------------------------------------|--------------------|---------------------|------------------------------------------|---------------------------------------------|---------------------|------------------|--------------------------|------------------------|------|---------------------------------------|-----------------|------|
| BouleyBill    | Dourdan,<br>FR<br>(48.533211<br>N,<br>2.007825 E)   | Garden<br>compost  | Direct              | 1,359                                    | 375,027                                     | PQ114747            | SRX24123901      | 39,215                   | Circularly<br>Permuted | 64.2 | 55                                    | 1               | EA4  |
| Carostasia    | Palaiseau,<br>FR<br>(48.713604<br>N,<br>2.248526 E) | Sprigs<br>of grass | Direct              | 1,673                                    | 476,899                                     | PQ114742            | SRX24123902      | 40,393                   | Circularly<br>Permuted | 63.8 | 63                                    | 0               | EA10 |

**Acknowledgements:** We thank Billy Biederman, Véronique Delesalle, Deborah Jacobs-Sera, Dan Russell, Vic Sivanathan and the SEA-PHAGES program for training and support.

## References

Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. 1990. Basic local alignment search tool. J Mol Biol 215(3): 403-10. PubMed ID: 2231712

Besemer J, Borodovsky M. 2005. GeneMark: web software for gene finding in prokaryotes, eukaryotes and viruses. Nucleic Acids Research 33: W451-W454. DOI: 10.1093/nar/gki487

Chan PP, Lin BY, Mak AJ, Lowe TM. 2021. tRNAscan-SE 2.0: improved detection and functional classification of transfer RNA genes. Nucleic Acids Research 49: 9077-9096. DOI: 10.1093/nar/gkab688

Cresawn SG, Bogel M, Day N, Jacobs-Sera D, Hendrix RW, Hatfull GF. 2011. Phamerator: a bioinformatic tool for comparative bacteriophage genomics. BMC Bioinformatics 12: 10.1186/1471-2105-12-395. DOI: 10.1186/1471-2105-12-395



#### 5/21/2025 - Open Access

Delcher AL, Bratke KA, Powers EC, Salzberg SL. 2007. Identifying bacterial genes and endosymbiont DNA with Glimmer. Bioinformatics 23: 673-679. DOI: 10.1093/bioinformatics/btm009

Gordon D, Abajian C, Green P. 1998. Consed: A Graphical Tool for Sequence Finishing. Genome Research 8: 195-202. DOI: 10.1101/gr.8.3.195

Hallgren J, Tsirigos KD, Pedersen MD, Almagro Armenteros JJ, Marcatili P, Nielsen H, Krogh A, Winther O. 2022. DeepTMHMM predicts alpha and beta transmembrane proteins using deep neural networks.: 10.1101/2022.04.08.487609. DOI: 10.1101/2022.04.08.487609

Jacobs-Sera D, Abad LA, Alvey RM, Anders KR, Aull HG, Bhalla SS, et al., Hatfull. 2020. Genomic diversity of bacteriophages infecting Microbacterium spp. PLOS ONE 15: e0234636. DOI: 10.1371/journal.pone.0234636

Laslett D. 2004. ARAGORN, a program to detect tRNA genes and tmRNA genes in nucleotide sequences. Nucleic Acids Research 32: 11-16. DOI: 10.1093/nar/gkh152

Milhaven M, Versoza CJ, Garg A, Cai L, Cherian S, Johnson K, et al., Pfeifer. 2023. Microbacterium Cluster EA Bacteriophages: Phylogenomic Relationships and Host Range Predictions. Microorganisms 11: 170. DOI: 10.3390/microorganisms11010170

Pope WH, Jacobs-Sera D. 2018. Annotation of Bacteriophage Genome Sequences Using DNA Master: An Overview. Methods in Molecular Biology, Bacteriophages: 217-229. DOI: 10.1007/978-1-4939-7343-9 16

Pope WH, Mavrich TN, Garlena RA, Guerrero-Bustamante CA, Jacobs-Sera D, Montgomery MT, et al., Hatfull. 2017. Bacteriophages of *Gordonia* spp. Display a Spectrum of Diversity and Genetic Relationships. mBio 8: 10.1128/mbio.01069-17. DOI: 10.1128/mBio.01069-17

Russell DA. 2018. Sequencing, Assembling, and Finishing Complete Bacteriophage Genomes. Methods Mol Biol 1681: 109-125. PubMed ID: 29134591

Russell DA, Garlena RA, Hatfull GF. 2019. Complete Genome Sequence of Microbacterium foliorum NRRL B-24224, a Host for Bacteriophage Discovery. Microbiology Resource Announcements 8: 10.1128/mra.01467-18. DOI: 10.1128/mRA.01467-18

Russell DA, Hatfull GF. 2016. PhagesDB: the actinobacteriophage database. Bioinformatics 33: 784-786. DOI: 10.1093/bioinformatics/btw711

Soding J, Biegert A, Lupas AN. 2005. The HHpred interactive server for protein homology detection and structure prediction. Nucleic Acids Research 33: W244-W248. DOI: 10.1093/nar/gki408

**Funding:** The present work has benefited from the platform of Cryo-EM of I2BC supported by IBiSA and by French Infrastructure for Integrated Structural Biology (FRISBI) ANR-10-INBS-05.

Author Contributions: Christophe Regeard: supervision, investigation, validation, writing - review editing. Florence Constantinesco-Becker: supervision, investigation. Anna A Arteni: investigation, writing - review editing. Malika Ouldali: investigation. Laura Pieri: investigation. Monique Auberdiac: resources. Daniel Delaruelle: resources. Kevin Tambosco: resources. Hakima Abes: resources. Clément Almeida-Monge: investigation. Félix Benard: investigation. Lucie Boucard: investigation. Elsa Chaouat: investigation. Juliette Charazac: investigation. Caroline Comte: investigation. Marie Coutard: investigation. Téo Denis: investigation. Clarisse Deschamps--Martin: investigation. Erwin Filloux: investigation. Anastasia Gaultier: investigation. Madeleine Gautheret: investigation. Hafsa Harrat: investigation. Océane Hill: investigation. Mattéo Jalmain: investigation. Cécile Jolivet: investigation. Diane Le Tyrant: investigation. Sarah Lopez: investigation. Cléa Medin: investigation. Camille Outtier: investigation. Mélissa Roze: investigation. Maria Rubio-Espinal: investigation. May-Blue Zeni: investigation. Ombeline Rossier: supervision, investigation, validation, writing - original draft, writing - review editing.

Reviewed By: Anonymous, Kurt Regner

History: Received December 29, 2024 Revision Received April 23, 2025 Accepted May 15, 2025 Published Online May 21, 2025 Indexed June 4, 2025

**Copyright:** © 2025 by the authors. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International (CC BY 4.0) License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

**Citation:** Regeard C, Constantinesco-Becker F, Lopes A, Arteni AA, Ouldali M, Pieri L, et al., Rossier O. 2025. Genome Sequences of *Microbacterium foliorum* Phages BouleyBill and Carostasia, isolated in France. microPublication Biology. 10.17912/micropub.biology.001492