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Abstract
Inhibition of mTORC1, a conserved nutrient-sensing complex, extends lifespan across model organisms, but the effects of
mTORC1 hyperactivation are less understood. RagA, a GTPase essential for mTORC1 activation, can be locked in its active
GTP-bound state through gain-of-function mutations, such as Q63L in C. elegans RAGA-1. We found that transgenic
expression of raga-1[Q63L] mutation (egIs12) decreases lifespan without hyperactivating mTORC1, suggesting mTORC1-
independent effects or transgene toxicity. In contrast, we show that a CRISPR-generated Q63L mutation at the endogenous
raga-1 locus (viz128) hyperactivates mTORC1 without affecting lifespan, challenging the paradigm that mTORC1
hyperactivation accelerates aging. Thus, genetic context and potential compensatory mechanisms may contribute to mTORC1-
mediated lifespan regulation, at least in metazoans.

Figure 1. Endogenous raga-1 gain-of-function mutation (viz128) increases phospho-RSKS-1 without affecting lifespan
in C. elegans:

(A) Model of the putative effects of Q63L gain-of-function mutation in C. elegans RAGA-1 (RagA[Q66L] mutation in
humans). RAGA-1[Q63L] is expected to lead to constitutive GTP binding, stabilizing its active conformation in a dimer with
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GDP-bound RAGC-1, hyperactivating mTORC1, and leading to phosphorylation of downstream targets, including RSKS-
1/S6K to stimulate cell growth and others to inhibit autophagy, contributing to lifespan shortening. (B) Representative Western
blot and (C) quantification of phospho-RSKS-1(T404), conserved from human phospho-p70-S6 Kinase(T389), in day-1 old
rsks-1(sv31), wild type (wt), raga-1(viz128[Q63L]), and egIs12[raga-1[Q63L]] animals. raga-1(viz128[Q63L]) and
egIs12[raga-1[Q63L]] were outcrossed four times to wild type, see Reagents. rsks-1(sv31, del) carries a 2,673 bp deletion
including T404, and is used as a negative control. n=4-8. ***P<0.001 by mixed-effects analysis with Holm-Šídák's correction.
No other comparisons to wt were significant. (D) Representative lifespan analysis of wt, raga-1[Q63L] and raga-1 loss-of-
function mutants. raga-1(ok386, lof) carries a 1,242 bp deletion spanning from 11 bp upstream of the Q63 codon through the
3' UTR. wt (mean lifespan (MLS): 15.5 days, N=98/116) compared with raga-1(viz128[Q63L]) (MLS: 15.0 days, N=103/112),
egIs12[raga-1[Q63L]] (MLS: 11.3 days, N=108/117), and raga-1(ok386, lof) (MLS: 21.9 days, N=101/120). Statistical
comparisons by log-rank test. See Extended Data Table 1 for additional lifespan experiments.

Description
The mechanistic target of rapamycin complex 1 (mTORC1) is a conserved protein complex that regulates cellular growth and
metabolism in response to environmental and nutritional cues. Under nutrient-rich conditions, mTORC1 becomes activated
and promotes anabolic processes such as cell growth and proliferation while simultaneously inhibiting catabolic pathways
such as autophagy. Conversely, during nutrient scarcity or stress, mTORC1 activity is reduced, leading to the activation of
autophagy to recycle cellular components and maintain energy homeostasis (Saxton and Sabatini 2017; Papadopoli et al.
2019).

Inhibition of mTORC1, either through genetic means or pharmacological compounds including rapamycin, reproducibly
extends lifespan and can delay several hallmarks of aging including dysregulated nutrient sensing, disabled macroautophagy,
and loss of proteostasis (Mannick and Lamming 2023; Papadopoli et al. 2019). These effects are observed across diverse
model systems, including in C. elegans (Vellai et al. 2003; Hansen et al. 2007; Robida-Stubbs et al. 2012; Zhang et al. 2024),
Drosophila (Kapahi et al. 2004; Bjedov et al. 2010) and mice (Harrison et al. 2009; Wu et al. 2013). In contrast, increased
mTORC1 activity has been observed in several human and rodent tissues with age (Markofski et al. 2015; Joseph et al. 2019;
Tramutola et al. 2015), and mTORC1 activation via gain-of-function mutations of the heterodimeric Ras-related small GTP-
binding proteins (Rag GTPases), which positively regulate mTORC1 complex formation and activity, is associated with
shortened lifespan in mammalian models (de la Calle Arregui et al. 2021; Ortega-Molina et al. 2024). However, the
characterization of models hyperactivating mTORC1 to directly study its effects on aging and related pathways is still limited,
particularly in genetically tractable systems, such as C. elegans. Understanding the physiological effects of mTORC1
hyperactivation is critical to uncover how mTORC1 contributes to aging and age-related pathologies.

A key regulatory mechanism of mTORC1 involves the Rag GTPases (Sancak et al. 2008; Kim et al. 2008), which act as
nutrient sensors that facilitate mTORC1 localization to lysosomes, critical for its activation. In mammals, RagA/B and
RagC/D form obligate heterodimers, while C. elegans only has one homolog of each family RAGA-1 and RAGC-1. Under
nutrient-rich conditions, GTP-bound RagA/B and GDP-bound RagC/D form an active heterodimer that interacts directly with
mTORC1 to activate downstream targets (Sambri et al. 2024). These include ribosomal S6 kinase (S6K), which promotes
protein synthesis (Brown et al. 1995), and Unc-51-like kinase 1 (ULK1), which inhibits autophagy initiation (Kim et al. 2011).
Upon low-nutrient conditions, the GTP-bound state of RagA/B is reduced, leading to mTORC1 inactivation, and
dephosphorylation of mTORC1 targets (Sambri et al. 2024). Through this regulation, the Rag GTPases mediate a dynamic
switch between anabolic and catabolic processes, coupling mTORC1 activity to nutrient availability.

While these regulatory principles are well-characterized in mammals, their exact roles in regulating mTORC1 in C. elegans
remain less understood. Evidence suggests that RAGA-1 and RAGC-1 act as positive regulators of mTORC1 in C. elegans, as
loss-of-function mutations phenocopy reduced mTORC1 activity in mammalian systems, leading to increased autophagy,
decreased protein synthesis, and extended lifespan (Robida-Stubbs et al. 2012). However, the developmental defects caused by
loss of raga-1 or ragc-1 are less severe than those observed with core mTORC1 components (Fukuyama et al. 2012),
indicating that mTORC1 may retain some activity independent of RAGA-1 and RAGC-1 (Blackwell et al. 2019; Schreiber et
al. 2010). Gain-of-function mutations, such as raga-1[Q63L], putatively lock RAGA-1 in its active GTP-bound state, and
provide a model for mTORC1 hyperactivation (Fig. 1A). The transgenic C. elegans strain egIs12[raga-1p::raga-
1[Q63L]+ofm-1p::gfp] overexpresses the raga-1[Q63L] mutation, alongside wild-type raga-1, and exhibits a drastically
shortened lifespan (Schreiber et al. 2010; Gerisch et al. 2020; Huang et al. 2022). However, neither mTORC1 activity nor
RAGA-1 expression levels have been directly assessed in this strain, leaving it unclear whether the reported lifespan reduction
is due to mTORC1 hyperactivation or alternative pathways influenced by RAGA-1 activation.

 

4/25/2025 - Open Access

https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=6239
https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=7215
https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=6239
https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=6239
http://www.wormbase.org/db/get?name=WBGene00006414;class=Gene
http://www.wormbase.org/db/get?name=WBGene00012497;class=Gene
https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=6239
http://www.wormbase.org/db/get?name=WBGene00006414;class=Gene
http://www.wormbase.org/db/get?name=WBGene00012497;class=Gene
https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=6239
http://www.wormbase.org/db/get?name=WBGene00006414;class=Gene
http://www.wormbase.org/db/get?name=WBGene00012497;class=Gene
http://www.wormbase.org/db/get?name=WBGene00006414;class=Gene
http://www.wormbase.org/db/get?name=WBGene00012497;class=Gene
http://www.wormbase.org/db/get?name=WBGene00006414;class=Gene
http://www.wormbase.org/db/get?name=WBGene00006414;class=Gene
https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=6239
https://wormbase.org/species/c_elegans/transgene/WBTransgene00026800
http://www.wormbase.org/db/get?name=WBGene00006414;class=Gene
http://www.wormbase.org/db/get?name=WBGene00006414;class=Gene
http://www.wormbase.org/db/get?name=WBGene00006414;class=Gene
http://www.wormbase.org/db/get?name=WBGene00006414;class=Gene
http://www.wormbase.org/db/get?name=WBGene00006414;class=Gene
http://www.wormbase.org/db/get?name=WBGene00006414;class=Gene


 

To further investigate the role of mTORC1 hyperactivation in C. elegans aging, we analyzed the effects of the raga-1[Q63L]
mutation on mTORC1 activity and lifespan. Our study included the previously characterized transgenic egIs12[raga-1[Q63L]]
strain (Schreiber et al. 2010), and a newly CRISPR-generated strain, raga-1(viz128[Q63L]) (Trimmer and Arur 2021), which
carries the raga-1[Q63L] mutation at its endogenous gene locus. The raga-1(viz128[Q63L]) strain allowed us to study the
effects of RAGA-1 hyperactivation without additional transgenic expression, providing a more direct model of mTORC1
hyperactivation. We assessed mTORC1 activity by measuring phosphorylation of mTORC1 target RSKS-1(T404), the
C. elegans ortholog of mammalian S6K(T389) (Fig. 1A). While rsks-1(sv31) mutants, which carry a large deletion including
T404, showed no p-RSKS(T404) signal, p-RSKS-1(T404) levels were significantly increased in the raga-1(viz128[Q63L])
mutant, but not in the egIs12[raga-1[Q63L]]-carrying strain, indicating that only the endogenous mutation is sufficient to
increase mTORC1 activity (Fig. 1B, C). To further explore the functional consequences of altered mTORC1 activity via raga-
1 modulation, we assessed lifespan in the raga-1[Q63L] strains. As a control for the effects of reduced mTORC1 activity on
lifespan, we included a raga-1(ok386) loss-of-function mutant, raga-1(ok386, lof) (Fig. 1D), which significantly extended
lifespan, as previously shown (Schreiber et al. 2010). The egIs12[raga-1[Q63L]] strain exhibited a markedly reduced lifespan
compared to wild type (Fig. 1D), consistent with previous reports linking transgenic raga-1[Q63L] expression to accelerated
aging (Schreiber et al. 2010; Gerisch et al. 2020; Huang et al. 2022). In contrast, the raga-1(viz128[Q63L]) strain, despite
increased mTORC1 activity, surprisingly displayed a normal lifespan comparable to wild type (Fig. 1D).

Our findings reveal distinct molecular changes and lifespan phenotypes in strains carrying the raga-1[Q63L] mutation,
highlighting that RAGA-1 and mTORC1 activity measured via RSKS-1 phosphorylation, and aging in C. elegans are not fully
interdependent, and further investigation is needed to elucidate the coupled and independent functions of each pathway
component.

The raga-1(viz128[Q63L]) strain exhibited increased p-RSKS-1(T404) levels, indicating elevated mTORC1 activity, yet
showed no significant difference in lifespan compared to wild type. This finding is inconsistent with the prevailing paradigm
that mTORC1 hyperactivation universally accelerates aging, and suggests that mTORC1 hyperactivation, at least to this
degree, may not be sufficient to impact lifespan in metazoans. It remains unclear whether other mTORC1 targets are similarly
phosphorylated in this mutant, warranting further investigation to map the broader effects of this raga-1 gain-of function
mutation on mTORC1 activity. Further characterization of mTORC1-associated phenotypes, such as autophagy, nucleolar size,
and lipid storage, could help identify which mTORC1-dependent pathways are selectively activated, inhibited or unaffected in
the context of endogenous raga-1[Q63L] mutation. These phenotypes could help explain why lifespan remains unchanged in
the raga-1(viz128[Q63L]) mutants, despite increased RSKS-1 phosphorylation.

In contrast, the egIs12[raga-1[Q63L]] strain exhibited decreased levels of p-RSKS-1(T404) compared to wild type (0.26-fold,
corresponding to a 73.7% reduction), although this difference did not reach statistical significance (P=0.67, mixed-effects
model). This strain also displayed a markedly shortened lifespan. The combination of these two observations suggests again
that mTORC1 activity, RSKS-1 phosphorylation, and longevity are not strictly coupled. Several non-exclusive explanations
could account for this. First, the shortened lifespan could result from raga-1[Q63L] overexpression toxicity effects,
independent of mTORC1 signaling. This explanation is consistent with the shortened lifespan but does not readily account for
the reduced p-RSKS-1 levels. To test whether the reduced lifespan in egIs12[raga-1[Q63L]] is independent of RSKS-1,
lifespan of long-lived rsks-1 mutants (Hansen et al. 2007) expressing egIs12[raga-1[Q63L]] could be assessed; if
egIs12[raga-1[Q63L]] shortens rsks-1 mutant lifespan, it would support the hypothesis that overexpression toxicity, rather
than mTORC1 signaling via RSKS-1, drives the phenotype. Second, the residual wild-type raga-1 expression could mitigate
the hyperactivating effects of the mutant allele, thereby limiting mTORC1 activation and RSKS-1 phosphorylation; however,
this would more likely normalize p-RSKS-1 levels and lifespan rather than reducing both. Assessing lifespan in raga-
1(viz128[Q63L])/+ heterozygotes, which, like egIs12, would express both wild-type and the raga-1 gain-of-function mutation,
could help distinguish between dosage-dependent effects and transgene-specific toxicity. If such heterozygotes exhibit normal
lifespan, this would argue against a simple buffering model and instead support a contribution of transgene overexpression to
the egIs12 phenotype. Third, a dominant-negative effect could explain the reduced p-RSKS-1 levels. A dominant-negative
effect occurs when a mutant protein interferes with the normal function of the wild-type protein, often by forming non-
functional complexes that block downstream activity. If overexpressed mutant RAGA-1[Q63L] bound and sequestered
endogenous RAGC-1 into non-productive heterodimers, this could suppress mTORC1 activation. While this would be
consistent with the reduction in RSKS-1 phosphorylation, an extended lifespan rather than a shortened lifespan would be
expected, and a further inhibition of mTORC1 (e.g., via let-363 RNAi) should fail to extend lifespan, which could be tested in
future experiments. Finally, It is also possible that the reduced lifespan observed in egIs12[raga-1[Q63L]] is driven by tissue-
specific effects of mTORC1 hyperactivation that do not translate into a detectable global increase in RSKS-1 phosphorylation
by Western blot. A recent study demonstrated that neuron-specific expression of raga-1 in a long-lived raga-1 loss-of-function
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mutant is sufficient to abolish its longevity phenotype (Zhang et al. 2019), highlighting the potential for distinct outcomes
depending on the tissues in which mTORC1 signaling is activated.

Our study has certain limitations, such as using tubulin for Western blot normalization rather than total levels of RSKS-1/S6K
due to the lack of a robust RSKS-1/S6K antibody validated in C. elegans. Although RSKS-1/S6K phosphorylation may not
fully reflect all functional outputs of mTORC1 activity, it remains the most comparable readout to mammalian studies
available. Additionally, the raga-1(viz128[Q63L]) strain showed some variability in p-RSKS-1 levels, which may reflect
genetic drift, as this variability became more pronounced when the strain was cultured over several weeks. To ensure data
reliability, we recommend using recently-thawed populations and multiple biological replicates when using this strain or
assessing RSKS-1 phosphorylation in any experimental context.

Overall, these findings challenge the current paradigm that mTORC1 hyperactivation universally reduces lifespan. We
demonstrate that mTORC1 hyperactivation, as implied by increased p-RSKS-1/S6K levels, in C. elegans raga-
1(viz128[Q63L]) mutants, is not sufficient to accelerate aging. These results underscore the complexity of mTORC1 signaling
in aging, highlighting how the degree and mode of hyperactivation influence its biological outcomes and necessitates further
research into its context-specific effects.

Methods
C. elegans cultivation

C. elegans were maintained at 20ºC on NGM plates, fed with Escherichia coli OP50, and cultured following standard
protocols (Brenner 1974). AUM1693 (raga-1(viz128)) and BZ1290 (egIs12[raga-1[Q63L]; ofm-1p::gfp]) were outcrossed 4
times to N2 wild type to generate KUM91 and KUM142, respectively. VC222 (raga-1(ok386)) and VB633 (rsks-1(sv31))
were not outcrossed. raga-1 mutant genotypes were confirmed by PCR and Sanger sequencing. The C. elegans strains used in
this study are listed under Reagents.

Western blots

Age-synchronized animals (N=100) were hand-picked on day 1 of adulthood into Eppendorf tubes containing 30 µL M9
buffer (0.6% sodium phosphate dibasic, 0.3% potassium dihydrogen phosphate, 0.5% sodium chloride, 0.025% magnesium
sulfate heptahydrate) using a platinum wire, and immediately washed 3-5 times with additional M9 buffer to remove all OP50
bacteria. After the final wash, M9 buffer volume was adjusted to ~10 µL. 2 µL 6X Laemmli buffer (Thermo Scientific,
#J61337.AC) was added, and samples were flash frozen in liquid N2. Worms were lysed by two rounds of freeze-thaw in
liquid N2 and briefly spun down in a tabletop centrifuge after each thaw, then boiled at 95ºC for 10 min. Samples were loaded
onto a 4-12% Bis-Tris protein gel (NuPAGE) in MOPS running buffer (NuPAGE, #NP0001) and proteins were separated using
110 V. Proteins were transferred to a PVDF membrane (Millipore, #IPVH85R) using a Novex Mini Cell system (Invitrogen,
#EI0001) at 30 V for 1.5 hours on ice. Membranes were blocked with 5% milk in Tris-buffered saline containing 0.05%
Tween-20 (TBS-T) for 30 minutes, followed by immunoblotting using primary anti-phospho-p70 S6 Kinase (Thr389) (Mak et
al. 2020) (1:1,000 in 1% milk in TBS-T; overnight incubation at 4ºC) and secondary anti-mouse IgG HRP (1:10,000 in 1%
milk in TBS-T) (see Reagents). Western blots were developed using SuperSignal chemiluminescence reagent (Thermo
Scientific, #34577 or #34095) and imaged on a ChemiDoc imager (Bio-Rad Laboratories, Inc.). To normalize protein loading,
blots were stripped for 4 min using stripping buffer (Thermo Scientific, #46430), blocked again with 5% milk in TBS-T,
probed with primary anti-tubulin (1:1,000 in 1% milk in TBS-T; overnight incubation at 4ºC) and secondary anti-rabbit IgG
HRP (1:10,000 in 1% milk in TBS-T), and developed and imaged as described above. Protein expression was quantified using
Image Lab 6.1.0 build 7 (Bio-Rad Laboratories, Inc.). Statistical analysis was performed using PRISM 10.4.0 software
(GraphPad) and P-values were calculated using a mixed-effects model with Holm-Šídák's correction.

Lifespan

Lifespan was assayed at 20ºC as previously described (Hansen et al. 2005). A total of 108-140 age-synchronized worms were
placed on six to seven 6 cm NGM plates seeded with OP50 bacteria at the L4 larval stage (lifespan day 0). Worms were
transferred away from progeny to new 6 cm NGM plates seeded with OP50 bacteria until post-reproductive, after which
worms were scored three times per week until dead. Worms were scored as dead when no movement was observed upon
gentle prodding with a platinum wire. Worms that experienced internal hatching, desiccated on the edge of the plate, escaped,
or were accidentally killed were censored. Statistical analysis was performed using OASIS 2.0 at
https://sbi.postech.ac.kr/oasis2/ (Han et al. 2016), and P-values were calculated with the log-rank (Mantel–Cox) method. See
Extended Data Table 1 for a summary of all lifespan experiments.

Reagents
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C. elegans strain Genotype Source

N2 Wild type Kumsta Lab, originated from Hansen Lab

KUM91 raga-1(viz128[Q63L]) II AUM1693 (Trimmer and Arur 2021) 4X outcrossed to N2

KUM142 egIs12[raga-1p::raga-1[Q63L]; ofm-1p::gfp] BZ1290 (Schreiber et al. 2010) 4X outcrossed to N2

VC222 raga-1(ok386) II CGC

VB633 rsks-1(sv31) III (Hansen et al. 2007)

Antibody Animal and clonality Source

Anti-Phospho-p70 S6 Kinase (Thr389) Mouse monoclonal Cell Signaling catalog #9206, lot #30

Anti-α-Tubulin Rabbit polyclonal Cell Signaling catalog #2144, lot #7

Anti-mouse IgG, HRP-conjugated Horse Cell Signaling catalog #7076, lot #38

Anti-rabbit IgG, HRP-conjugated Goat Cell Signaling catalog #7074, lot #33
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Description: Extended Data Table 1: Lifespan analysis of wild-type and raga-1 mutant worms.. Resource Type: Dataset. File:
Moreno TM_ExtendedData.pdf. DOI: 10.22002/kgd2h-f8s29
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