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Abstract
Glioblastomas are known as “immune cold” cancers with little induction of damage-associated molecular phenotypes
(DAMPS). We previously described the induction of ferroptosis in glioblastoma cells using the small molecule, OGM, a
specific inhibitor of GPR68. The ferroptotic cell death pathway has been reported to induce the release of DAMPS. Here,
we show that induction of ferroptosis through both Erastin and OGM results in DAMPS in U87MG cells. This suggests
that ferroptosis in human glioblastomas may be able to convert them to an “immune hot” cancer, increasing their
susceptibility to immunotherapy. These findings highlight the immunogenic potential of causing ferroptosis in
glioblastoma as a therapeutic mechanism of action.
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Figure 1. Ferroptosis induces damage-associated molecular phenotypes in U87MG GBM cells:

(A) Treatment of U87MG cells with ERA or OGM significantly increases ATP release into the media in comparison to the
DMSO control. (B), (C), and (D) Representative Immunofluorescence images of DAPI-stained nuclei (blue) and
calreticulin staining (green) on the cell surface. ERA (C) and OGM (D) demonstrate a substantial increase in calreticulin
on the cell surface in comparison to the DMSO-treated control (B). (E) Quantification of the calreticulin-positive cells
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imaged in (B), (C), and (D), mean % positive cells. (A) n=3 biological repeats with n=12 technical repeats. (B), (C), (D),
and (E) n=20 biological repeats with n≥200 cells per condition. Error bars show standard error of percent positive cells
per well. **<p=0.005, ***<p=0.0005.

Description
Glioblastoma multiforme (GBM) is the most prevalent malignant tumor of the central nervous system1–5. Immunotherapy
represents a promising avenue for clinical cancer treatment, but thus far has been less efficacious in GBM due to the
highly immune suppressive tumor microenvironment6–10. Ferroptosis, an iron-dependent form of regulated cell death, has
garnered attention for its potential immunogenicity11–13. Ferroptosis is characterized by the release of damage-associated
molecular patterns (DAMPs), which can trigger an immune response. Two key reporter DAMPs are adenosine
triphosphate (ATP) release from the cells into the media and calreticulin (CRT) shuttling to the cell surface 11–14.

While research has shown that ferroptosis can induce DAMPs in various cancer cell lines, direct evidence of this process
specifically in GBMs is sparse12,15–22. Multiple studies have investigated the activation of ferroptosis in GBMs. However,
these publications have not characterized the release of DAMPs, with the exception of a single paper using GL261 mouse
glioma cells23. GL261 cells exhibited a significant initial increase in immunogenic potential that was gone by 24 hours of
treatment 23. Here, we will show, for the first time, direct evidence of DAMP release in a human glioblastoma cell line
upon induction of ferroptosis. These findings are critical to understanding how ferroptosis might be harnessed
therapeutically to stimulate anti-tumor immunity and improve treatment outcomes for GBM patients. Here we investigate
ATP and calreticulin as readouts of immunogenic cell death (ICD) caused by the ferroptosis inducers Erastin (ERA),
which inhibits the cystine-glutamate antiporter system Xc-, and Ogremorphin (OGM), a specific inhibitor of GPR6821,24.

Erastin and Ogremorphin cause ATP release and Calreticulin display in human GBM

Treatment of the human glioblastoma multiforme cell line, U87MG, with ERA or OGM, resulted in a significant increase
in ATP release, as measured by relative luminescence units (RLU) using the CellTiter-Glo assay. ERA induced a robust
elevation in ATP secretion after 6 hours of treatment (Figure A). Similarly, OGM resulted in a comparable enhancement
in ATP release (Figure A). Consistent with ATP release, treatment of U87MG cells with ERA and OGM also led to
significant calreticulin exposure on the cell surface after 3 hours of treatment, a hallmark of immunogenic cell death (ICD)
(Figure B-D). Using immunofluorescence imaging and quantification both ERA and OGM induced a marked increase in
calreticulin-positive cells (Figure E). These results confirm that ferroptosis inducers like ERA and OGM can rapidly drive
calreticulin shuttling and ATP release, key damage-associated molecular patterns (DAMPs). These data suggest a rapid
increase in the immunogenic potential of GBMs undergoing early ferroptosis.

The ferroptosis inducers Erastin (ERA) and Ogremorphin (OGM) significantly enhance the immunogenicity of
glioblastoma cells by driving the release of key damage-associated molecular patterns (DAMPs), including ATP and
calreticulin exposure. These processes are critical for transforming an immune-cold tumor microenvironment into one
capable of eliciting robust immune responses. In U87MG glioblastoma cells, treatment with ERA or OGM caused a
significant elevation in ATP release, a critical marker of immunogenic cell death, effectively signaling immune activation
in the extracellular environment. Additionally, calreticulin exposure, another hallmark of immunogenic cell death, was
markedly increased within three hours of treatment, as observed through immunofluorescence imaging. These results
underscore the potency and immediacy of the ferroptosis pathway in driving immunogenic cell death, providing
compelling evidence for its role in converting immune-cold tumors into immune-hot tumors.

Together, these findings underline the dual role of ferroptosis in glioblastoma multiforme: early ferroptosis priming the
tumor microenvironment for immune system activation while late ferroptosis simultaneously promotes iron-mediated cell
death. By facilitating the release of ATP and the surface exposure of calreticulin, ferroptosis inducers like Erastin, which
targets Xc-, and Ogremorphin, which targets GPR68, provide a promising avenue for enhancing the efficacy of
immunotherapies in glioblastoma.

Methods
ATP experiments:

U87MG cells were seeded in 12 well plates in DMEM (HEPES, high glucose, and GlutaMAX Supplement) and allowed
to attach overnight at 37°C in 5% CO2. Media was then removed and cells were washed with PBS before fresh
FluoroBrite DMEM media containing 15 µM Erastin, 2 µM OGM, or control (DMSO) was added to the cells. Cells were
then incubated at 37°C in 5% CO2 for 6 hours. The media was then removed and transferred to 96 well plates (20 µl per
well) and ATP concentration in the media was quantified using CellTiter-Glo (100 µl per well). Luminescence was read
with a Promega GloMax Multi.

Calreticulin experiments:
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U87MG cells were seeded in a 96-well black-walled plates in DMEM (HEPES, high glucose, and GlutaMAX
Supplement) and allowed to attach overnight at 37°C in 5% CO2. The following day the media was replaced with fresh
media containing 15 µM Erastin, 2 µM OGM, or control (DMSO). Cells were incubated for 3 hours at 37°C in 5% CO2.
Media was then removed and the cells were washed in PBS before being fixed with 4% PFA for 10 minutes at room
temperature. Fixed cells were then washed with PBS and blocked in 5% donkey serum for 25 minutes at room
temperature. After blocking, the 1° antibody (1:150, Calreticulin polyclonal) was added and samples were incubated at
4°C overnight. The following day, the wells were washed three times with PBS and the 2° antibody (1:200, Cy 2
conjugated AffiniPure Donkey Anti-Rabbit IgG) was added. Samples were incubated at room temperature for 2 hours.
After incubation, cells were washed with PBS four times for 10 mins each. Cells were then mounted with Fluoroshield
solution with DAPI and imaged on a Lionheart FX (Biotek-Agilent). Images were quantified using Gen5 (Biotek-Agilent).

Statistical analysis

Calreticulin increases with ICD, therefore a one-tailed Fisher’s exact test was used to determine significance of change in
proportion of positive staining. Statistics on ATP release were preformed using multiple two-tailed student’s T-test. Both
calculations used Bonferroni’s correction for multiple hypothesis testing.

Reagents
Reagents

Reagent Description Vendor Catalog
Number

U87MG Cells Human glioblastoma cell line ATCC HTB-14

Erastin (ERA) Ferroptosis inducer targeting Xc- Sigma-Aldrich SML1524

Ogremorphin (OGM) GPR68 inhibitor and ferroptosis inducer Custom
Synthesized N/A

Cy2-conjugated Donkey Anti-Rabbit
IgG

Secondary antibody for calreticulin
imaging

Jackson
ImmunoResearch

711-225-
152

DAPI Nuclear stain for fluorescence microscopy Sigma-Aldrich F6057

Cell Titer Glo Assay ATP quantification assay Promega G7571

Fluoroshield with DAPI Mounting medium for fluorescence
microscopy Sigma-Aldrich F6057

DMEM, high glucose, GlutaMAX™
Supplement, HEPES

Basal medium for maintaining U87MG
cells Gibco 10564011

FluoroBrite DMEM DMEM with very low background
fluorescence for imaging Gibco A1896701

PBS, pH 7.4 Washing cells Gibco 10010023
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