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Abstract
The six transmembrane SLITRK proteins differentially regulate important aspects of neuronal development and function.
Variants in SLITRK5 have been associated with complex neuropsychiatric conditions including obsessive compulsive
disorder (OCD) and Slitrk5 knockout mice exhibit overgrooming and anxiety-like behaviors. This study generated slitrk5a
zebrafish mutants using CRISPR-Cas9. Alterations in slitrk5a did not affect F0 gross embryonic development or anxiety-
like behaviors, however, a repetitive, checking behavior was significantly increased in the novel approach test (NAT). This
observation in zebrafish supports an emerging association of SLITRK5 sequence alterations with OCD-like repetitive
behaviors.

Figure 1. Alterations in slitrk5a increase repetitive, checking behaviors in adult zebrafish without affecting early
development or anxiety-associated behaviors:

A) Zebrafish (Danio rerio) embryos were injected with CRISPR-Cas9 reagents to generate slitrk5a mutants, then their
early development was monitored. After confirmation of induced alterations in slitrk5a, repetitive, locomotor, and
anxiety-related behaviors were analyzed in adults. B) Motor activity, defined as the number of times 24 hpf embryos
displayed tail coiling events within the chorion during a one-minute observation period, was similar between uninjected
(n=36), sham control (n=34, p=0.71), and CRISPR-injected embryos (n=32, p=0.96) indicating CRISPR reagents did not
affect early motor activity levels. C) Sham control and CRISPR-injected embryos demonstrated similar mortality rates at
36 hours post fertilization (hpf) compared to uninjected embryos (n=4 trials, p=0.89; normalized to uninjected embryo
survival rates) suggesting that CRISPR reagents did not affect survival. D) The lengths of uninjected control (n=41), sham
control (n=33), and CRISPR-treated embryos (n=30) were not significantly different (p>0.05) at 48, 60, and 75 hpf
suggesting CRISPR reagents did not affect early growth rates. E) In the novel tank test (NTT), both WT (n=9) and F0
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slitrk5a mutant adults (n=6) demonstrated similar latencies to entering the upper region of the novel tank (p=0.10)
suggesting that alterations in slitrk5a did not affect this estimate of anxiety. F) In the open field (OF) analysis, both WT
(n=6) and slitrk5a mutant (n=6) adult zebrafish spent similar amounts of time in thigmotaxis, defined as the outer 6 cm
edge of the new tank (p=0.31), suggesting that this anxiety-related behavior is also unaffected by alterations in the slitrk5a
sequence. G) Representative swimming tracks during the novel approach test (NAT) for the WT and slitrk5a mutant
zebrafish. H-I) Slitrk5a mutants (n=6) spent significantly more time within 5 cm of the central novel object than WT fish
(n=6, p=0.0004) and made significantly more visits to the object (p=0.02) suggesting that mutations in slitrk5a are
associated with increased checking behaviors. Each animal was evaluated in the NTT assay three times and the OF/NAT
two times with averages for each individual plotted. All error bars represent standard error of the mean. Graphics created
with BioRender.

Description
The SLITRKs are a family of six transmembrane proteins that play critical roles in central nervous system development
and function (Aruga and Mikoshiba, 2003; Won et al., 2019; Puranik and Song, 2024). Structurally, SLITRKs exhibit
homology with both the SLIT and TRK protein families that have well-established roles in neuronal development and
function. Slit ligands guide axons during early development by signaling through robo transmembrane receptors (Brose
and Tessier-Lavigne, 2000; Chedotal, 2007; Blockus and Chedotal, 2016). Transmembrane trk receptors transmit signals
from neurotrophin ligands to influence neuronal survival and development (Huang and Reichardt, 2003; Deinhardt and
Chao, 2014). SLITRK extracellular domains are characterized by leucine-rich repeats (LRRs) characteristic of molecules
that guide synapse formation and stability (de Wit et al., 2011; Ko, 2012; Schroeder and de Wit, 2018) and by intracellular
domains that include phosphorylation sites characteristic of trk receptors. SLITRKs are expressed in developing and adult
vertebrate neural tissues at synaptic contact sites and have been associated with a variety of human neuropsychiatric
conditions such as schizophrenia, obsessive compulsive disorder (OCD), and Tourette syndrome (Proenca et al., 2011;
Monteiro and Feng, 2016).

SLITRK5, one member of the SLITRK family, plays diverse roles in regulating central nervous system processes including
neurite outgrowth, synapse formation, dendritic branching, and signal transmission (Yim et al., 2013; Um et al., 2014;
Song et al., 2015; Kang et al., 2016; Puranik and Song, 2024). Slitrk5 is expressed in regions of the developing central
nervous system during periods of morphogenesis and synaptogenesis and is highly expressed in the adult CA1 region of
the hippocampus, occipital and frontal lobes of the brain, spinal cord, and medulla, indicating a plausible association with
multiple areas of neuron growth and central nervous system processing (Aruga et al., 2003; Beaubien and Cloutier, 2009;
Meyer, 2014; Round et al., 2014). Variants and epigenetic modifications of human SLITRK5 have been linked to
behavioral and neurodevelopment conditions including obsessive-compulsive disorder (OCD), Tourette syndrome,
attention deficit/hyperactivity disorder (ADHD), conduct disorder (CD), and schizophrenia (Proenca et al., 2011; Song et
al., 2017; Salesse et al., 2020; Halvorsen et al., 2021; Chiocchetti et al., 2022; Puranik and Song, 2024). Additionally,
Slitrk5 knockout (KO) mice exhibit severe anxiety and OCD-like behaviors such as excessive and harmful self-grooming
(Shmelkov et al., 2010). Physiologically, elevated activity in the orbitofrontal cortex has also been observed, consistent
with functional imaging findings in humans with OCD, implicating dysregulation of corticostriatal circuitry (Rauch et al.,
2007; Ting and Feng, 2011). Increased SLITRK5 is also associated with epilepsy in a rat model (Liu et al., 2023).

The zebrafish (Danio rerio) is a cost-effective, genetically accessible, and easily manipulable model system to study
nervous system development and neuropsychiatric conditions (Fetcho and Liu, 1998; Stewart et al., 2015; Fontana et al.,
2018; Nelson and Granato, 2022). Slitrk5a expression in the developing zebrafish, first detected at 48 hours post
fertilization (hpf), is observed in the retina, midbrain, medulla oblongata, valvula cerebelli, pituitary gland, and spinal cord
suggesting slitrk5a could contribute to neurogenesis, morphogenesis, and/or synaptogenesis (Round et al., 2014). This
study specifically investigated slitrk5a in the zebrafish central nervous system with downstream implications on behaviors
associated with neuropsychiatric conditions such as obsessive compulsive disorder (OCD).

To generate mutant zebrafish with altered slitrk5a gene sequences, CRISPR-Cas9 reagents were microinjected into
embryonic zebrafish at the single-cell stage (Fig. 1A; Hwang et al., 2013; Sorlien et al., 2018). The embryos were
examined in early development then grown to adulthood when they could be genotyped to determine if the slitrk5a
sequence had been altered. CRISPR-injected, sham-injected control, and uninjected control embryos at 24 hpf displayed
similar (p>0.05) average tail coiling events per minute indicating that CRISPR reagents did not alter early motor activity
(Fig. 1B). At 36 hpf, CRISPR-injected and sham-injected control survived at similar rates (p=0.89) suggesting that
CRISPR reagents did not alter survival rates (Fig. 1C). The reduced survival rates of injected (sham- and CRISPR-
injected) embryos compared to uninjected control embryos are not unexpected given that microinjection necessarily
damages the chorion. Embryo lengths (Fig. 1D) were also similar (p>0.05) in all comparisons of uninjected (n=41), sham-
injected (n=33), and CRISPR-injected (n=30) embryos at 48, 60, and 75 hpf, indicating that gross morphological growth
rates were unaffected by microinjection, CRISPR reagents, or the resulting genetic alterations. CRISPR-Cas9 editing of a
target gene was not expected to occur successfully in all cells of all embryos. Consequently, changes in slitrk5a sequence
could cause growth alterations that are not discernible in an F0 population prior to genotyping.
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Out of a cohort of approximately 50 CRISPR-injected embryos, 30 viable adult fish resulted, six of which were identified
as having alterations in the slitrk5a gene sequence on chromosome 15. Three behavioral assays were used to compare
adult zebrafish behavior in wild type (WT) and slitrk5a mutant F0 fish reared from the same clutch of embryos. The novel
tank test (NTT) was administered (Fig. 1E) to estimate levels of anxiety in zebrafish through their latency to enter the
upper half of the new tank (Kysil et al., 2017; Duarte et al., 2019). Typically, fish immediately swim to the bottom of a
new tank, begin to explore as they acclimate, and eventually enter the upper portions of the tank, swimming toward the
surface. The latency for the fish to swim toward the surface of the water can be used as an estimate for anxiety (Kysil et
al., 2017). No significant difference (p=0.10) was observed between latencies for WT (n=9) and mutant fish (n=6) to enter
the upper half of the novel tank, suggesting that altering the slitrk5a sequence did not affect this measure of anxiety.

An open field (OF) assay (Johnson and Hamilton, 2017) was used to assess general swimming behavior and thigmotaxis,
the tendency of the fish to swim close to the walls of the tank, an anxiety-related behavior. No significant difference was
observed in thigmotaxis (Fig. 1F) between the WT controls (n=6) and slitrk5a mutant adult fish (n=6) during open field
observation (p=0.23), suggesting alterations in the slitrk5a sequence also did not alter this anxiety-related behavior.
Moreover, the OF assay revealed no significant differences between the mutant fish and WT controls in average
swimming velocity (mutant: 8.8 + 0.96 cm/s; WT: 7.9 + 0.70 cm/s; p=0.45) or total distance swum (mutant: 2510 + 268
cm; WT: 2303 + 203 cm; p=0.55) indicating that mutations in the slitrk5a sequence did not alter general swimming ability
or behavior.

Finally, the novel approach test (NAT) was used to assess anxiety-like and OCD-like behaviors. In the NAT, fish are
placed into a tank with a novel object to model fear as the fish may perceive the new object as potentially harmful
(Johnson and Hamilton, 2017; Hamilton et al., 2017). The path of WT fish demonstrated a consistent peripheral circling
patterns with few interactions with the central novel object whereas the paths of slitrk5a mutant fish demonstrated
repeated approaches to the novel object, illustrating an OCD-like repetitive checking behavior (Fig. 1G). A significant
increase in the overall number of visits to the novel object was observed (Fig. 1H; p=0.0004) as well as a significant
increase in the amount of time spent around the novel object in slitrk5a mutant fish compared to WT fish (Fig. 1I;
p=0.02). These data suggest that alterations in slitrk5a induced repetitive, OCD-like behaviors in zebrafish. In the NAT,
slitrk5a mutant zebrafish interacted significantly more with the novel object; this checking behavior is consistent with the
loss of SLITRK5 in mice that led to an OCD-like repetitive behavior of overgrooming (Schmelkov et al., 2010).
Additionally, this observation parallels human behavior as some individuals with OCD repetitively check stimuli or
objects that could potentially pose a threat even after confirming that no threat exists (APA, 2013).

The creation of F0 slitrk5a mutant zebrafish demonstrates feasibility for CRISPR-Cas9 gene targeting to create mutant fish
in which developmental and behavioral analyses can be conducted to examine the roles of slitrk5a in neuronal
development and behavior. That a behavioral phenotype of significantly enhanced checking was observed in a small
number of likely mosaically edited F0 fish in this preliminary study warrants investment in future studies to create a
homozygous loss-of-function slitrk5a mutant line of zebrafish for analysis of development and behavior.

Methods
Zebrafish: This study followed protocols approved by the Davidson College Animal Care and Use Committee. Adults
were housed in a recirculating aquatic system kept at a 28 °C with a 14:10 hour light:dark cycle. Adult fish were fed twice
daily with brine shrimp hatched in-house and Aquafeed Z Gel Cubes. Embryos and early larvae were raised in 10 cm Petri
dishes with system water supplemented with 0.0005% methylene blue as a gentle antibiotic (Nüsslein-Volhard and Dahm,
2002). Debris and dead embryos were removed daily and the water was replaced. Larvae and juvenile fish were reared in
750 mL plastic beakers with fish system water plus 0.0005% methylene blue until they were able to feed on brine shrimp
(typically ~14 days). Water changes were completed every other day and fish were closely monitored until they had grown
sufficiently to be moved into recirculating colony system tanks.

Generation of slitrk5a Mutants Using CRISPR-Cas9: A CRISPR crRNA was designed to target the beginning of exon
one of the zebrafish slitrk5a gene using Integrated DNA Technologies’ (IDT) design portal to maximize specificity and
minimize off-target effects. Upon receipt, the Alt-R S.p. Cas9 Nuclease V3 was diluted to 57 μM in Cas9 buffer (20 mM
Tris-HCl, 600 mM KCl, 20% glycerol) as previously described (Sorlien et al., 2018; Wu et al., 2018). To form the gRNAs,
equal amounts of crRNA and trans-activating (tracr) RNA were mixed, diluted to 57 μM in duplex buffer and annealed by
heating to 95 °C for five minutes then cooled on ice. To generate the ribonucleoprotein complex (RNP), equal volumes of
annealed gRNAs and Cas9 solutions were mixed, incubated at 37 °C for five minutes then cooled on ice, generating a 28.5
μM RNP solution. Approximately 1 nL of RNP was microinjected into zebrafish embryos at the single-cell stage. The
resulting embryos were closely monitored throughout development and reared to adults.

Early Developmental Analysis: Wild-type (AB background) zebrafish were injected with CRISPR-Cas9 reagents
targeting slitrk5a as described above (CRISPR treatment). In parallel, a cohort of embryos from the same clutch were
similarly microinjected with ~1 nL of 0.1% phenol red (sham control) and a cohort of embryos were left untreated
(uninjected control). To assess for potential developmental differences, larvae were imaged with a Nikon SMZ1270
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stereomicroscope equipped with a digital camera. Early embryonic motor activity was measured by counting the number
of spontaneous tail coiling events per minute while embryos were in the chorion at 24 hpf with the observer unaware of
the treatment group (de Oliveira et al., 2021; von Hellfield et al., 2023). Tail coiling events were manually scored as
visible contractions of the animal's tail during a one minute observation. As a general indication of development, body
lengths (anterior-posterior) of embryos at 48, 60, and 75 hpf were measured without knowledge of the treatment group
using ImageJ. Additionally, 36 hpf survival rates across the three groups of embryos were measured for four separate
experiments.

gDNA Isolation and Genotyping of Adult Zebrafish: At approximately three months of age, samples were obtained of
each adult’s caudal fin as previously described (Westerfield, 2007). Genomic DNA (gDNA) was extracted from the tissue
using the Qiagen DNeasy Blood & Tissue Kit following manufacturer specifications. Isolated gDNA was then used to
amplify the genomic region around slitrk5a via standard polymerase chain reaction (PCR). PCR products were purified
using the Zymo DNA Clean & Concentrate Kit and then sequenced with Sanger sequencing via Eurofins Genomics.
Sequences were aligned to the zebrafish slitrk5a reference sequence using SnapGene. Sequencing alignments were
analyzed for mutations indicative of non-homologous end-joining (NHEJ) DNA repair initiated by CRISPR-guided Cas9
double-stranded (DS) breaks in the region targeted by the gRNA. A non-targeted portion of the slitrk5a gene adjacent to
the target site remained intact with nearly 100% homology to the reference sequence. Mutant individuals with alterations
in the slitrk5a sequence were then housed separately from WT adults with intact slitrk5a sequences within the colony
where their caudal fins regenerated before behavioral testing.

 
Novel Tank Test (NTT): The novel tank test (NTT) was administered as previously described to record the latency for
isolated adult fish to enter the upper half of a new tank (Kysil et al., 2017; Duarte et al., 2019). Zebrafish were removed
from colony tanks, individually placed into 2.0 L transport tanks, and allowed to acclimate for one hour. Acclimatized fish
were then individually placed into a 9.5 L tank (32.5 x 21 x 17.5 cm) and video recorded for 10 minutes using EthoVision
XT tracking software. If a fish did not enter the upper half of the tank after ten minutes, they were removed and returned
to their individual 2.0 L transport tank. The initial latency for the fish to enter to the upper half of the tank was analyzed
using EthoVision XT software. Each individual fish was observed in the NTT assay three times.

Open Field (OF) Observation and the Novel Approach Test (NAT): Open field (OF) observations and the novel
approach test (NAT) were performed as previously described (Hamilton et al., 2017; Johnson and Hamilton, 2017). Fish
were removed from colony tanks and individually placed into 2.0 L transport tanks, with enrichment and allowed to
acclimate for one hour. Fish were then placed individually into a 21 L tank (37.5 x 31 x 17.5 cm) and video recorded for
five minutes. This five minute acclimation period served as the open field (OF) observation. Subsequently, a novel object
(three yellow, plastic 1.5 mL tubes glued to a 60 mm plastic petri dish lid) was placed in the center of the tank and
observation continued for an additional five minutes. Internal EthoVision XT analysis was performed to calculate the
dependent variables in this study. Thigmotaxis was defined as the peripheral region of the tank within 6 cm of the edges
on all four sides. Visits to the novel object were defined as the fish approaching the central object within 5 cm. Each
individual fish was observed on the OF/NAT assay twice.

Statistical Analysis: Statistical analysis was performed using GraphPad Prism 10. Survival comparisons used paired t-
tests. Motor activity and embryo length used ANOVA multivariate analysis. Comparisons for all three behavioral analyses
(NAT, NTT, OF) used unpaired t-tests. A p-value of ≤0.05 was considered significant (*) in all analyses.

 

Reagents

Reagent/Instrument Source Catalog/Identifier

Agarose Fisher Scientific BP165

Alt-R™ CRISPR-Cas9 crRNA Integrated DNA Technologies 5’ - GGTTCCTCAAGGAGACCTCC - 3’

Alt-R™ S.p. Cas9 Nuclease V3 Integrated DNA Technologies 1081058

Alt-R™ CRISPR-Cas9 tracrRNA Integrated DNA Technologies 1072532

Aquafeed Z-cubes Clear H2O 60-01-0250

Brine shrimp eggs Bio-Marine Artemia cysts
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DNA Clean & Concentrator-100 Kit Zymo D4029

DNeasy Blood & Tissue Kit Qiagen 69504

Duplex buffer Integrated DNA Technologies 11-01-03-01

Methylene blue Thermo Scientific 414240250

OneTaq 2X Master Mix New England Biolabs M0482S

Sequencing Eurofins Genomics n/a

Software - behavior analysis Noldus EthoVision XT 16

Software - graphing and statistics GraphPad Prism 10.4.1

Software - image analysis Public domain ImageJ

Software - sequence analysis Dotmatics SnapGene

Stereomicroscope Nikon SMZ1270

Tricaine methanesulfonate Western Chemical Tricaine-S

Primer - PCR forward 5’ - GGTAGTCCGGCTCTATTTGAAG - 3’

Primer - PCR reverse 5’ - GGCTTGTTTGTGGTGGTAATG - 3’

Primer - sequencing 5’ - TTGGCATCGTACCATAAAGCATAG - 3’
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