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Abstract
In Caenorhabditis elegans, nose touch avoidance behavior is regulated by the Amphid Sheath (AMsh) glial cells via release of
GABA. AMsh glia themselves exhibit calcium responses to mechanical stimulation, although the mechanosensitive channel
responsible remains unidentified. Here, we investigated whether pezo-1, the sole C. elegans homolog of mammalian PIEZO1
and PIEZO2, mediates AMsh glial mechanosensitivity and contributes to nose touch avoidance. We examined behavioral
responses in three pezo-1 mutant strains, including a full gene deletion and two truncation alleles lacking the pore-forming
transmembrane domains. In addition, we monitored calcium transients in the full gene deletion strain. While pezo-1(av149)
mutants showed a slight reduction in nose touch response, pezo-1(av240) and pezo-1(sy1199) mutants behaved like wild-type
animals. In vivo calcium imaging revealed that AMsh glial responses to touch were preserved in pezo-1(av240) mutants, with
no significant difference in peak calcium signals compared to wild-type. These findings indicate that pezo-1 is not required for
AMsh glial mechanosensory responses or nose touch avoidance behavior. Further research is needed to identify the channels
and pathways mediating mechanotransduction in AMsh glia.
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Figure 1. Loss of PEZO-1 function does not affect AMsh glial calcium responses to mechanical stimulation or nose
touch avoidance behavior.:

(A) Schematic representation of the predicted topology of PEZO-1, a mechanosensitive ion channel composed of 38
transmembrane domains arranged into 9 transmembrane helix units (THUs). The channel also includes a central pore domain
—comprising inner (IH) and outer (OH) helices—a transmembrane anchor domain, an intracellular beam domain, and a C-
terminal domain (CTD) containing four intracellular α-helices. The anchor domain links peripheral mechanosensitive blades to
the central pore, potentially influencing ion conduction and structural stability. The beam domain serves as a mechanical lever
transmitting force to the pore, thereby regulating channel gating. In the pezo-1(av149) (deletion) and pezo-1(sy1199)
(premature stop codon) alleles, transmembrane domains 29–38, including the pore region, are absent. (B) Nose touch
avoidance behavior in wild-type, trpa-1 (negative control), pezo-1(av149), pezo-1(av240), and pezo-1(sy1199) animals. N =
40, 40, 10, 30, and 10, respectively. (C) Diagram of the C. elegans head depicting one of the two AMsh glial cells (green) and
associated ASH sensory neurons. GCaMP-6s, a genetically encoded calcium indicator, is expressed in AMsh glia. Mechanical
stimuli are applied to the nose tip using a glass probe controlled by a digital motion controller. (D) Calcium transients in AMsh
glia in response to two consecutive nose tip stimulations in wild-type animals, measured as the change in GCaMP-6s
fluorescence over time. The dashed line represents the time the touch stimulation was delivered. (E) Quantification of peak
fluorescence changes following the first and second touch stimuli in wild-type animals. (F) Calcium transients decay time. (N
= 12) (G-I) Calcium transients and corresponding quantification for pezo-1(av240) mutants (N = 8), showing similar
responses to wild type. Data are presented as individual data points with mean ± SEM in (B), mean ± SEM in (D) and (G), as
individual data points with mean in (E), (F), (H), and (I). Statistics were by Anova with Tukey correction in B, and paired
student's t-Test in E, F, H and I **, ***, and **** indicate p<0.01, 0.001, and 0.0001, respectively.

Description
 

6/19/2025 - Open Access

http://www.wormbase.org/db/get?name=WBGene00007505;class=Gene
http://www.wormbase.org/db/get?name=WBStrain00046993;class=Strain
http://www.wormbase.org/db/get?name=WBGene00007505;class=Gene
http://www.wormbase.org/db/get?name=WBVar02153182;class=Variation
http://www.wormbase.org/db/get?name=WBGene00007505;class=Gene
https://wormbase.org/species/c_elegans/variation/WBVar02160462
http://www.wormbase.org/db/get?name=WBGene00007801;class=Gene
http://www.wormbase.org/db/get?name=WBGene00007505;class=Gene
http://www.wormbase.org/db/get?name=WBVar02153182;class=Variation
http://www.wormbase.org/db/get?name=WBGene00007505;class=Gene
http://www.wormbase.org/db/get?name=WBVar02153184;class=Variation
http://www.wormbase.org/db/get?name=WBGene00007505;class=Gene
https://wormbase.org/species/c_elegans/variation/WBVar02160462
https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&id=6239
http://www.wormbase.org/db/get?name=WBGene00007505;class=Gene
http://www.wormbase.org/db/get?name=WBVar02153184;class=Variation


 

C. elegans responds to mechanical stimulation of the nose by initiating backward locomotion. This behavior is primarily
mediated by a pair of head sensory neurons known as ASH (Kaplan & Horvitz, 1993). Upon nose touch, ASH neurons exhibit
an increase in intracellular calcium that depends on the function of the putative mechanosensitive DEG/ENaC channel DEG-
1(Fernandez-Abascal et al., 2022; Geffeney et al., 2011; Kindt et al., 2007). This calcium influx triggers the release of
glutamate and the neuropeptide NLP-3, which activate downstream interneurons to initiate the escape response (Fernandez-
Abascal et al., 2022; Hart et al., 1995). Recent studies have shown that ASH neuron activity is regulated by the associated
Amphid Sheath (AMsh) glial cells through GABA signaling (Cheng et al., 2024; Duan et al., 2020; Fernandez-Abascal et al.,
2022; Graziano et al., 2024). Specifically, GABA released from AMsh glia dampens ASH responses during repeated
stimulation, preventing sensory overload and preserving touch sensitivity. Interestingly, AMsh glia themselves respond to
mechanical stimulation with increases in intracellular calcium (Chen et al., 2022; Duan et al., 2020; Fernandez-Abascal et al.,
2022). However, the identity of the mechanosensitive channel responsible for this glial response remains unknown.

In this study, we tested the hypothesis that the mechanosensitive ion channel pezo-1 contributes to the Amphid Sheath (AMsh)
glial response to mechanical stimulation and plays a role in the nose touch avoidance behavior of C. elegans. pezo-1 is the sole
C. elegans homolog of the mammalian PIEZO1 and PIEZO2 channels, which belong to a conserved family of mechanically-
gated ion channels involved in diverse physiological processes (Coste et al., 2012). PIEZO1 is predominantly expressed in
non-sensory tissues and is essential for vascular development, blood flow sensing, and red blood cell volume regulation
(Cahalan et al., 2015; Li et al., 2014; Ranade et al., 2014; Zarychanski et al., 2012). It also contributes to bladder stretch
sensing, cell migration, and epithelial cell extrusion (Gudipaty et al., 2017; Miyamoto et al., 2014), and has been implicated in
neuronal development and cancer metastasis (McHugh et al., 2012; Pathak et al., 2014). In contrast, PIEZO2 is primarily
expressed in sensory cells, including dorsal root ganglion (DRG) neurons and Merkel cells, where it mediates light touch
sensation (Coste et al., 2012; Maksimovic et al., 2014; Woo et al., 2014). Genetic studies in mice and humans have shown that
PIEZO2 is essential for proprioception, respiratory mechanosensation, and stretch sensing in internal organs such as the
bladder (Chesler et al., 2016; Marshall et al., 2020; Nonomura et al., 2017; Szczot et al., 2018). Given these roles, we
investigated whether pezo-1 similarly contributes to mechanosensory function in AMsh glial cells and behavior in C. elegans.
So far C. elegans pezo-1 has been involved in food sensation, pharyngeal pumping, mating behavior, and crawling (Brugman
et al., 2022; Hughes et al., 2022; Komandur et al., 2023; Millet et al., 2022; Short, 2022).

To investigate the role of pezo-1 in AMsh glial calcium responses to mechanical stimulation and in nose touch avoidance
behavior, we analyzed three different pezo-1 mutant strains. The pezo-1(av240) allele is a full gene deletion, whereas pezo-
1(av149) and pezo-1(sy1199) encode truncated proteins lacking transmembrane domains 29–38, which include the two
transmembrane helices that form the channel pore (Figure 1A). We first assessed nose touch avoidance behavior in these
mutants compared to wild-type (WT) animals. A modest reduction in response was observed in pezo-1(av149) mutants (WT:
0.805 ± 0.02; av149: 0.666 ± 0.046), whereas pezo-1(av240) and pezo-1(sy1199) mutants responded similarly to WT (Figure
1B). These results suggest that pezo-1 does not play a major role in mediating nose touch avoidance behavior and that the
small reduction in touch sensitivity seen in pezo-1(av149) might be due to secondary mutations, given that this mutant has not
been outcrossed.

Next, to determine whether pezo-1 is required for mechanically evoked calcium transients in AMsh glia, we performed in vivo
calcium imaging in pezo-1(av240) animals expressing GCaMP-6s in AMsh glial cells (Figure 1C). In WT animals, nose touch
stimulation elicited calcium transients in AMsh glia that exhibited adaptation upon a second stimulation, consistent with
previous observations (Figure 1D, E) (Chen et al., 2022; Duan et al., 2020; Fernandez-Abascal et al., 2022). Comparable
responses were observed in pezo-1(av240) mutants (Figure 1G, H), with no significant difference in peak calcium signals and
calcium kinetics between WT and mutant animals (ΔF/F, WT = 11.25 ± 2.87 and av240 = 14.23 ± 5.45; tau, WT: 38.85 ± 5.71
and av240: 34.97 ± 4.65) (Figure 1F, I). Together, these data indicate that pezo-1 is not required for AMsh glial calcium
responses to mechanical stimulation and does not play a central role in nose touch avoidance behavior. Future studies should
focus on identifying alternative mechanosensitive channels or signaling pathways that contribute to mechanotransduction in
AMsh glia.

Methods
C. elegans growth and maintenance: All C. elegans strains were maintained at 20°C on nematode growth medium (NGM)
plates seeded with Escherichia coli OP50, following standard protocols (Brenner, 1974). The Bristol N2 strain was used as the
wild-type control. Only healthy, well-fed, day 1 (D1) young adult hermaphrodites were used in all experiments.

Strains: The following strains were used in this study: N2, RB1052 trpa-1(ok999), AG416 pezo-1(av149), AG570 pezo-
1(av240), PS811 pezo-1(sy1199), BLC402 blcEx447[Pspig-1::GCaMP-6s;Punc-122::GFP], and BLC477 pezo-1(av240);
blcEx447[Pspig-1::GCaMP-6s;Punc-122::GFP]. While strains AG416 pezo-1(av149) and AG570 pezo-1(av240) were
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generated by CRISPR/Cas9 and were not outcrossed, strain PS811 pezo-1(sy1199) was outcrossed several times (Bai et al.,
2020).

Nose touch: Behavioral assays were conducted as previously described (Fernandez-Abascal et al., 2022; Hart et al., 1999).
Briefly, an eyelash tool was used to gently touch the nose of forward-moving animals, applied perpendicular to their direction
of movement. Each worm received five consecutive touches, with a 30-second interval between stimuli. A reversal in response
to the touch was scored as a positive response. All experiments were performed blind to genotype to avoid bias.

Calcium imaging: Nematodes expressing GCaMP-6s in AMsh glia were immobilized on 2% agarose pads made with
extracellular saline solution, following previously established protocols (Fernandez-Abascal & Bianchi, 2022; Fernandez-
Abascal et al., 2022; Johnson et al., 2020; Kindt et al., 2007). Imaging was performed using an Olympus IX70 microscope
equipped with a Lambda DG-4 illumination system, an FF01-500/24-25 excitation filter (Semrock), and a Pco camera.
Mechanical stimulation was applied to the tip of the nose using a borosilicate capillary glass probe, controlled by a C-863
Mercury Servo Controller (Physik Instrumente) and operated through PIMikroMover software (version 2.4.4.6). Each worm
received two successive nose pokes. Imaging data were acquired using Micro-Manager 2.0 software (Edelstein, Tsuchida et
al., 2014), with recordings starting 30 seconds before stimulation and lasting 135 seconds. Fluorescence data were analyzed
using Fiji (ImageJ), and results were plotted using GraphPad Prism (version 8.4.2). Fluorescence signals were normalized to
the average intensity recorded during the 10 seconds preceding stimulation.
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