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Abstract

Euglena gracilis exhibits a unique pigment profile distinct from land plants and green algae. In this study, we purified
photosystem I supercomplexes containing light-harvesting complexes (PSI-LHCI) from E. gracilis strain Z and analyzed
their biochemical and spectroscopic properties. The PSI-LHCI contained diadinoxanthin while lacking lutein and
violaxanthin, which are characteristic of green-lineage organisms. The absorption and 77-K fluorescence spectra of
Euglena PSI-LHCI showed the Qy peak of chlorophyll a at 675 nm and emission at 732 nm, respectively, comparable to
land plant PSI-LHCI. These findings suggest conservation of long-wavelength chlorophylls despite distinct pigment-
binding characteristics, shedding light on light-harvesting adaptations in secondary green algae.
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Figure 1. Purification and characterization of PSI-LHCI supercomplexes from E. gracilis strain Z:

(A) Elution profile by anion exchange chromatography. The peak labeled as 1 was collected. (B) Trehalose density
gradient centrifugation profile of the peak 1. The green fraction (red arrow) was recovered as the Euglena PSI-LHCI
supercomplex. (C) SDS-PAGE profile of the Euglena PSI-LHCI. The asterisk indicates a band assigned to PsaA and PsaB
based on migration between 45.0 and 66.4 kDa molecular weight markers. (D) HPLC chromatogram of the Euglena PSI-
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LHCI monitored at 440 nm. Ddx, diadinoxanthin; b, Chl b; a, Chl a; $-Car, -carotene. (E) Pigment composition of the
Euglena PSI-LHCI. Values represent millimole of pigment per mole of Chl a and are shown as means + S.D. of three
independent measurements. (F) Absorption spectrum of the Euglena PSI-LHCI measured at room temperature,
normalized to the Chl a Qy peak. (G) Fluorescence emission spectrum of the Euglena PSI-LHCI measured at 77 K upon
excitation at 430 nm, normalized to the maximum intensity.

Description

Photosystem I (PSI) catalyzes the light-driven electron transfer from plastocyanin or cytochrome cg at the lumenal side of
the thylakoid membrane to ferredoxin at the stromal side in oxygenic photosynthetic organisms (Golbeck 1992; Brettel
and Leibl 2001; Fromme et al. 2001; Nelson and Junge 2015). In most species, PSI is associated with light-harvesting
complexes (LHCs), forming PSI-LHCI supercomplexes, which facilitate excitation energy transfer. These pigment-protein
assemblies vary considerably in both protein composition and pigment content across photosynthetic lineages (Croce and
van Amerongen 2013, 2020; Hippler and Nelson 2021; Shen 2022).

Euglena gracilis, a phototrophic flagellate derived from secondary endosymbiosis (Turmel et al. 2009; Novak Vanclova et
al. 2020), exhibits an unusual carotenoid (Car) profile. Its LHCs bind diadinoxanthin and diatoxanthin—Cars typically
found in red-lineage organisms such as diatoms and haptophytes (Falkowski et al. 2004)—but lack lutein, violaxanthin,
and zeaxanthin, which are characteristic of green-lineage organisms such as land plants and green algae (Cunningham Jr.
and Schiff 1986; Casper-Lindley and Bjorkman 1998; Kato et al. 2017; Nagao et al. 2021). Despite this, the LHC
polypeptides of E. gracilis display marked similarity to those of green algae (Houlné and Schantz 1988; Muchhal and
Schwartzbach 1992), suggesting a conserved evolutionary origin. However, the PSI-LHCI supercomplex of E. gracilis has
not been purified, and its molecular and functional properties remain unknown.

The PSI-LHCI supercomplexes of E. gracilis were purified using anion-exchange chromatography followed by trehalose
density gradient centrifugation (Figure 1A, B). The polypeptide composition of the purified complexes was analyzed by
SDS-PAGE (Figure 1C). Multiple bands were detected, including a prominent band (asterisk) corresponding to PsaA and
PsaB based on their migration between 45.0 and 66.4 kDa molecular weight markers. Additional bands within the 14.3—
29.0 kDa range likely represent PSI and LHCI subunits. The overall band pattern closely resembled those previously
reported for PSI-LHCI from land plants (Dunahay and Staehelin 1985; Croce et al. 1996) and green algae (Germano et al.
2002; Qin et al. 2015).

The pigment composition of Euglena PSI-LHCI was analyzed by HPLC (Figure 1D). Four pigments—diadinoxanthin,
Chl b, Chl a, and f-carotene—were identified. The pigment stoichiometry relative to Chl a was calculated as 171 for
diadinoxanthin, 21 for Chl b, and 57 for S-carotene (Figure 1E). Diadinoxanthin was the predominant Car, consistent with
previous reports of isolated Euglena LHCs (Cunningham Jr. and Schiff 1986). This Car profile differed markedly from
that of PSI-LHCI in land plants and green algae, whose LHCIs lack diadinoxanthin (Schmid et al. 2002; Klimmek et al.
2005; Qin et al. 2015; Shen 2022). Despite sequence similarity between Euglena and green algal LHC proteins (Houlné
and Schantz 1988; Muchhal and Schwartzbach 1992), and their classification within the LHC protein superfamily
(Engelken et al. 2010; Sturm et al. 2013), the distinct Car composition highlights unresolved mechanisms governing Car-
binding specificity in Euglena.

The absorption spectrum of Euglena PSI-LHCI displayed the Qy band of Chl a at 675 nm, with additional peaks
attributable to Chls and Cars in the 400-500 nm region (Figure 1F). Compared with PSI-LHCI from Spinacia oleracea
(Qin et al. 2006) and Chlamydomonas reinhardtii (Drop et al. 2011), the Euglena complex exhibited lower absorbance in
the 450-500 nm range, likely reflecting its distinct Car composition, particularly the absence of lutein and violaxanthin.
Additionally, the Qy peak of Chl a in the Euglena PSI-LHCI appeared at a shorter wavelength (675 nm) than the
corresponding peaks in S. oleracea and C. reinhardtii (679 nm), suggesting differences in Chl composition and binding
properties.

The 77-K fluorescence-emission spectrum of Euglena PSI-LHCI exhibited a major peak at 732 nm with a broad shoulder
near 677 nm (Figure 1G). The 732-nm emission closely resembles that of PSI-LHCI from land plants (Qin et al. 2006;
Drop et al. 2011), but differs from the 714-nm peak characteristic of C. reinhardtii (Turmel et al. 2009; Le Quiniou et al.
2015). In land plants, long-wavelength fluorescence near 730 nm originates from LHCI-bound Chls (Lam et al. 1984;
Palsson et al. 1995; Croce et al. 1998; Qin et al. 2006), suggesting that the 732-nm emission in Euglena similarly arises
from LHCI-associated Chls. In contrast, the 677-nm shoulder likely reflects higher-energy Chls within LHCIs and/or
dissociated LHCISs, consistent with the 675-680-nm fluorescence of isolated LHCIs from S. oleracea (Lam et al. 1984;
Qin et al. 2006). Additionally, PSI-LHCI from other land plants exhibited emission peaks around 750 nm, attributed to
specific Chl-binding sites within LHCIs (Li et al. 2024). This raises the possibility that similar sites contribute to the 732-
nm emission in Euglena.

In summary, the presence of diadinoxanthin and the absence of canonical green-lineage Cars underscores the distinct
pigment composition of Euglena PSI-LHCI, reflecting its divergence from typical land plant and green algae.
Nevertheless, the 732-nm fluorescence emission indicates partial functional conservation with LHCI in land plants.
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Despite similarities in LHC protein sequences to green algae, the unique Car profile of Euglena suggests independent
adaptations in pigment-binding properties. These observations expand our understanding of PSI-LHCI diversity and
provide new insights into the structural and pigment-binding variations underlying photosynthetic light-harvesting
systems.

Methods
Cell culture and thylakoid preparation

E. gracilis strain Z was cultured in a Cramer-Myers medium (Cramer and Myers 1952) supplemented with 1/1000 volume
of KW21 (Daiichi Seimo) at 30 °C under continuous aeration and a photosynthetic photon flux density of 30 pmol

photons m2s1 (Nagao et al. 2021). Harvested cells were pelleted by centrifugation and suspended in buffer A (20 mM
Mes-NaOH (pH 6.5), 0.2 M trehalose, 5 mM CaCl,, and 10 mM MgCl,). Cell disruption was performed using glass beads
under dark and cold conditions on ice, employing 19 cycles of 10 s agitation and 3 min rest (Nagao et al. 2017). Unbroken
cells were removed by centrifugation at 3,000 x g for 10 min at 4 °C. The resultant pellet was subjected to a second round
of disruption under the same conditions, followed by centrifugation again at 3,000 x g for 10 min at 4 °C. The supernatant
was then centrifuged at 125,000 x g for 20 min at 4 °C to isolate thylakoid membranes, which were resuspended in buffer
A. Chl concentrations were determined in 100% methanol (Porra et al. 1989).

Purification of PSI-LHCI supercomplexes

All purification steps were performed at 4 °C unless otherwise stated. Thylakoid membranes were solubilized in the dark
with 1% (w/v) sucrose monolaurate (SM; Carbosynth) at a Chl concentration of 0.25 mg mL ! by gentle stirring for 20
min on ice. After centrifugation at 100,000 x g for 20 min, the supernatant was applied to a HiTrap Q HP column (5 mL;
Cytiva) equilibrated with buffer B (20 mM Mes-NaOH (pH 6.5), 0.2 M trehalose, and 0.03% SM). The column was
washed with buffer B at a flow rate of 1.0 mL min ™! until the eluate became colorless. Proteins were eluted using the
following gradient: 0—5 min, 10% buffer C (buffer B with 500 mM NaCl); 5-35 min, 10-60% buffer C; 35-55 min, 60—
100% buffer C; and 55-75 min, 100% buffer C. The peak labeled as 1 (Figure 1A) was collected and loaded onto a 10—
40% linear trehalose gradient prepared in 20 mM Mes-NaOH (pH 6.5), 10 mM NaCl, and 0.03% SM. After centrifugation
at 154,000 x g for 18 h (P40ST rotor; Hitachi), the green band (indicated by a red arrow in Figure 1B) was harvested,
concentrated using a 150 kDa cut-off filter (Apollo; Orbital Biosciences), and stored in liquid nitrogen.

SDS-PAGE

Protein composition was analyzed by SDS-PAGE as described by Ikeuchi and Inoue (1988). PSI-LHCI samples were
solubilized in 3% lithium lauryl sulfate and 75 mM dithiothreitol at 60 °C for 10 min, and then applied to a 16%
polyacrylamide gel containing 7.5 M urea. A molecular weight marker (SP-0110; APRO Science) was used. After
electrophoresis, gels were stained with Coomassie Brilliant Blue R-250.

Pigment analysis

Pigments associated with PSI-LHCI were analyzed by HPLC as described previously (Nagao et al. 2020). Pigments were

extracted in 100% methanol and separated using a flow rate of 0.9 mL min™!. The mobile phases consisted of solvent A
(methanol:acetonitrile:0.25 M pyridine = 50:25:25 (v:v:v)) and solvent B (methanol:acetonitrile:acetone = 20:60:20
(v:v:v)) (Zapata et al. 2000). Pigments were identified by their absorption spectra and retention times (Zapata et al. 2000;
Taniguchi and Lindsey 2021). Pigment composition was quantified according to the method of Nagao et al. (2021).

Spectroscopic measurements

Absorption spectra were measured at room temperature using a spectrophotometer (UV-2450; Shimadzu). Fluorescence-
emission spectra were recorded at 77 K using a spectrofluorometer (RF-5300PC; Shimadzu). Each of the spectra was
averaged and normalized.
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