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Abstract
GNE myopathy (GNEM) is a rare myopathy caused by mutations in the UDP-GlcNAc epimerase/ManNAc-6 kinase
(GNE) gene, which reduce sialic acid (SA) biosynthesis and impair muscle through unclear mechanisms. As development
of SA-restoring GNEM gene therapies is underway, it is essential to develop SA-detecting biomarkers in preclinically-
relevant murine tissues. Here, we assess skeletal muscle staining of the GneM743T/M743T GNEM model with four
sialylation-detecting lectins. While no tested lectins could effectively differentiate between GneM743T/M743T and wild type
tissues, Peanut Agglutinin (PNA) showed differential binding in tissues with and without SA-removing sialidase
treatment, indicating its promise in detecting hyposialylation in murine tissues.

Figure 1. Lectin Staining in Murine Models of GNEM:

Lectin (MAA, WGA, PNA, and SNA) staining in homozygous wild type (WT) and GneM743T/M743T (HO) (top), and WT
with and without sialidase treatment (–S and +S, respectively) (bottom) in gastrocnemius and tibialis anterior skeletal
muscle. Bar graphs represent mean±SD of RFU*CSA for WT/HO, and RFU for –S/+S plots. Significance (denoted with
asterisks) was determined using t-tests followed by a false-discovery correction. Representative images are shown beside
their respective bar graphs. Scale bar represents 100μm.
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GNE myopathy (GNEM) is a rare autosomal myopathy with increased prevalence in Japanese and Iranian Jewish
populations due to the presence of founder mutations. Symptoms typically begin in the third decade of life with distal
weakness and slow proximal progression, eventually leading to loss of ambulation (Argov & Mitrani Rosenbaum, 2015).

GNEM is caused by mutations in the Glucosamine (UDP-N-Acetyl)-2-Epimerase/N-Acetylmannosamine Kinase (GNE)
gene, which encodes a bifunctional enzyme that catalyzes steps of the sialic acid (SA) biosynthetic pathway. As such, SA
abundance is generally reduced in GNEM patient tissues, leading to skeletal muscle pathology through an unclear
mechanism. SA is a negatively charged, terminal glycan of the glycocalyx, modulating diverse aspects of skeletal muscle
physiology such as gating of voltage-gated ion channels, myogenesis, and oxidative stress (Champigny et al., 2005; Cho et
al., 2017; Johnson et al., 2004; Schmitt et al., 2022; Schwetz et al., 2011).

Gene therapy to treat GNEM seeks to provide a corrected copy of the GNE gene though a vector such as adeno-associated
virus (AAV) (Mitrani-Rosenbaum et al., 2012, 2022; Nemunaitis et al., 2010, 2011). To support the development of these
therapies, it is important to develop Investigative New Drug (IND)-enabling preclinical biomarkers using mouse models
such as the GneM743T/M743T model, which was reported to show muscle hyposialylation and has been used for therapeutic
development for oral glycan therapies (Fleming & Powers, 2012; Lochmüller et al., 2019; Niethamer et al., 2012; Xu et
al., 2017). An ideal biomarker for gene therapy would be staining-based to allow visualization of a transgene or its
product for quantification of transduction efficiency (Hakim et al., 2020).

Lectins, linkage-specific carbohydrate-binding proteins, could act as such a preclinical staining biomarker by measuring
sialylation in skeletal muscle (Leoyklang et al., 2018; Sharon, 2007; Tajima et al., 2005). To act as a viable biomarker,
lectins that directly bind SA would show reduced binding in GNEM, while lectins that bind underlying sugar structures
that are unmasked in SA’s absence would show increased binding in GNEM (Leoyklang et al., 2018; Saito et al., 2004;
Tajima et al., 2005; Voermans et al., 2010). Several lectins have shown altered binding in skeletal muscle cells due to SA
alterations, including Sambucus nigra agglutinin (SNA), Wheat germ agglutinin (WGA), Maackia amurensis agglutinin
(MAA), and Peanut Agglutinin (PNA) (Leoyklang et al., 2014, 2018; Niethamer et al., 2012; Noguchi et al., 2004; Zhang
et al., 2018; Zygmunt et al., 2023).

It is critical to have a robust measure of hyposialylation due to its importance as a preclinical gene therapy outcome metric
in GneM743T/M743T model. Although various lectins have been shown to reflect sialylation in various in vitro models,
murine models, and GNEM patient tissue samples, they have not been directly compared in their ability to assess
sialylation in a preclinical murine model. Here, we assess a panel of SA-detecting lectins for their efficacy in SA detection
at approximately 1 and 2 months of age, common gene therapy injection timepoints (Gray, 2016). We use both the
GneM743T/M743T GNEM murine model specifically and wild-type (WT) muscles with and without enzymatic SA removal
to assess these lectins in murine tissues more generally, allowing identification of lectins that could act as IND-enabling,
preclinical biomarkers and potentially translate into outcome measures for a GNEM gene therapy clinical trial.

We first compared lectin staining in GneM743T/M743T and WT gastrocnemius and tibialis anterior (TA) muscles using
sialylation-detecting lectins Maackia Amurensis agglutinin (MAA), peanut agglutinin (PNA), Sambucus Nigra agglutinin
(SNA), and wheat germ agglutinin (WGA). In all cases, we found no significant differences between GneM743T/M743T and
WT skeletal muscle samples after correcting for multiple comparisons, though PNA staining in TA was significantly
different prior to application of the false discovery correction (p=0.0217).

We next sought to enzymatically treat WT skeletal muscle with the SA-removing sialidase enzyme (Minami et al., 2021)
to assess the ability of each lectin to detect sialylation changes in murine tissues more generally. Here, we found that PNA
binding in WT mouse muscle showed a statistically significant increase after sialidase treatment, with a 3.2-fold increase
(p<0.0001) in gastrocnemius and a 3.0-fold increase (p<0.0001) in the TA. MAA, SNA, and WGA did not show a
statistically significant change between sialidase-treated and -untreated WT skeletal muscle in either the gastrocnemius or
TA after correcting for multiple comparisons, though prior to application of the false discovery correction, WGA staining
in gastrocnemius was significantly lower in sialidase-treated muscle (p=0.0479).

Overall, this study used a series of lectins to stain skeletal muscle of a GNEM mouse model. In addition to assessing
differences between WT and GneM743T/M743T mice, we also evaluated the utility of these lectins in murine models more
generally by comparing lectin staining with and without sialidase, which cleaves SA residues from underlying glycans
(Minami et al., 2021). The panel of lectins investigated herein were chosen from the literature based on their prior use in
quantifying hyposialylation in biopsies of patients with GNEM (Leoyklang et al., 2014, 2018; Saito et al., 2004; Voermans
et al., 2010). To act as a useful biomarker, SA-binding lectins (such as MAA, SNA, and WGA) would show reduced
binding in GneM743T/M743T or sialidase-treated WT tissues, while lectins that bind sugar structures underlying SA (such as
PNA) would show increased binding in GneM743T/M743T or sialidase-treated WT tissues (Leoyklang et al., 2018; Saito et
al., 2004; Tajima et al., 2005; Voermans et al., 2010).

First, we demonstrated that none of the four lectins tested (WGA, PNA, SNA, MAA) showed differential binding in WT
vs GneM743T/M743T skeletal muscle. This is in contrast to previous studies in human biopsies from patients with GNEM,
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which have found that SNA (Leoyklang et al., 2014, 2018; Saito et al., 2004), WGA (Broccolini et al., 2008; Saito et al.,
2004), and MAA (Saito et al., 2004) decrease in biopsies from patients with GNEM as compared to non-GNEM patients
via either lectin staining or lectin blotting, although other studies report no change (Leoyklang et al., 2014; Nemunaitis et
al., 2010; Noguchi et al., 2004; Tajima et al., 2005; Voermans et al., 2010). This inconsistency may be due to mutation-
specific variability in hyposialylation, with sialylation being relatively well-preserved in the p.M743T mutation as
compared to other common mutations (Celeste et al., 2014). Additionally, previous studies have shown that SNA binding
is decreased in the GneM743T/M743T mouse model of GNEM, though they use formalin-fixed tissues, as compared to
fresh-frozen tissues used herein (Niethamer et al., 2012). Also in contrast to our results in the GneM743T/M743T model,
PNA binding has been shown to increase in patients with GNEM (Saito et al., 2004; Tajima et al., 2005; Voermans et al.,
2010). Of note, in our results, PNA staining was significantly higher prior to application of a false discovery correction, so
it is possible that with a larger sample size we would be able to detect differences between these groups using this lectin.
In addition, one limitation of this work is that we do not address the extent to which muscle characteristics such as fiber
type distribution may affect these results. Overall, it is possible that these lectins behave differently in this mouse model
than in human biopsies, which raises concerns for the future use of this model in pre-clinical drug-development work.

Based on these results, we next tested the ability of these lectins to meaningfully detect changes in SA levels in WT
murine tissues using sialidase, an enzyme that reliably removes SA from underlying glycans (Minami et al., 2021). In our
study, PNA was the only lectin that showed a significant difference between sialidase-treated and -untreated muscle after
correction for multiple comparisons, though WGA was significant before correction. This robust decrease in PNA binding
is consistent with work in human biopsies that have observed lower PNA staining in GNEM patient tissue (Saito et al.,
2004; Tajima et al., 2005; Voermans et al., 2010). The lack of significant difference in binding of WGA, SNA, and MAA
would indicate that these lectins are not a reliable measure of SA in mice. These findings highlight the importance of
further evaluation of lectin staining validity in murine tissues.

In summary, our findings indicate that PNA has the most promise in assessing altered sialylation in murine tissues as
compared to WGA, SNA, and MAA. In addition, these findings would indicate that caution should be exercised in
utilizing lectin staining as an outcome measure for preclinical trials of sialylation-restoring GNEM therapies in
GneM743T/M743T skeletal muscle.

Methods
Mice

Skeletal muscle tissues were obtained from wild type (WT) (n=9, 3 males and 6 females) and homozygous
GneM743T/M743T (HO) (n=9, 5 males and 4 females) mice that were housed and euthanized at Charles River Laboratories
and cared for under the Animal Care and Use Committee of Charles River Laboratories Canada. Animals were sacrificed
at 4-10 weeks.

Lectin Immunostaining

Gastrocnemius and tibialis anterior muscles were flash frozen and sectioned at 10µm using a cryostat. For lectin staining,
where indicated, samples were incubated in PBS (-S) or treated with 0.3 units/mL neuraminidase (sialidase) from
Clostridium perfringens (C. welchii) (+S) for 30 minutes at 37°C and washed in PBS. Next, sections were blocked in 10%
goat serum for one hour, then incubated with biotinylated Maackia Amurensis agglutinin (MAA), fluorescein-conjugated
peanut agglutinin (PNA), fluorescein-conjugated Sambucus Nigra agglutinin (SNA), or fluorescein-conjugated wheat
germ agglutinin (WGA) for one hour. For MAA staining, sections were washed with phosphate-buffered saline (PBS) and
incubated with FITC-Streptavidin for one hour. All sections were washed in PBS and then mounted with ProLong Gold
Antifade Mountant with DAPI. Exposure time-matched images were acquired for each lectin at 20X using a Z-X800E
Keyence Fluorescence Microscope, with 2-4 images analyzed per sample.

Quantification and Statistical Analysis

Relative fluorescence was quantified in each image using ImageJ, then normalized to average fiber diameter within each
mouse (quantified via Cellpose as described elsewhere (Stringer et al., 2021)) via multiplication by cross-sectional area
(CSA). Determinations of significance between the two groups were assessed using an unpaired two-tailed Students’ t
test; statistics were performed using Prism software version 9.3.0 (GraphPad; San Diego, CA) with a false-discovery
correction to account for multiple comparisons (Curran-Everett, 2000).

Reagents

Lectin Glycan Specificity Available From

Maackia amurensis agglutinin (MAA) Siaα2-3Gal Vector Laboratories
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Peanut Agglutinin (PNA) Galβ1-3GalNAcα1-Ser/Thr Vector Laboratories

Sambucus nigra agglutinin (SNA) Siaα2-6Gal/GalNAc Vector Laboratories

Wheat germ agglutinin (WGA) Sia, GlcNAc(β1,4)GlcNAc Vector Laboratories

Animal Stain/Genetic Background Obtained

WT C57BL/6J Charles River Laboratories

GneM743T/M743T C57BL/6J with M743T mutation in the Gne gene Charles River Laboratories
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