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Abstract

Microglia are resident immune cells that play crucial roles in regulating brain development. During the pre and postnatal
stage, microglial morphology gradually alters by the elongation of processes and an increase in the number of branches.
Previously, we reported that hypoxanthine, a key intermediate of the purine metabolism, affects the morphology of
microglial cell line BV2. In this study, we show that administration of allopurinol, an inhibitor of xanthine oxidase,
changes microglial morphology in vivo. We found that the number of branches and summed length of processes are
increased in allopurinol-treated microglia in a sex-independent manner. Notably, allopurinol administration altered the
number of IBA1-positive microglia in male mice. These findings suggest that purine metabolism contributes to the
regulation of microglial characteristics during neonatal brain development.
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Figure 1. Allopurinol administration regulates microglial morphology:

(A) The purine metabolic pathway. Allopurinol (ALP) inhibits xanthine oxidase (XO), which catalyzes the reaction of
hypoxanthine and xanthine to uric acid. (B) Immunostainings showing the expression of IBA1 in either vehicle- or ALP-
administrated male mice. The right panels show the binary images converted from the left panels. P14, cortical layer 2/3,
Scale bar = 20 pm. (C) Immunostainings showing the number of IBA1-positive microglia in male mice after either
vehicle- or ALP-administration. P14, cortical layer 2/3, Scale bar = 50 pm. (D) Immunostainings showing the expression

of IBA1 in either vehicle- or ALP-administrated female mice. The right panels show the binary images converted from the
left panels. P14, cortical layer 2/3, Scale bar = 20 pm. (E) Immunostainings showing the number of IBA1-positive
microglia in female mice after vehicle- or ALP-administration. P14, cortical layer 2/3, Scale bar = 50 pm. (F to J)
Quantification of microglial processes using automated skeletonized assay. Data were collected from male mice. P14,
cortical layer 2/3, Ctrl; n = 3 mice, 15 cells, ALP; n = 3 mice, 26 cells. mean + SEM, student’s t-test. (K) The
quantification of the number of IBA1-positive cells in the layer 2/3 of cerebral cortex. Ctrl; n = 3 mice, 9 fields, ALP; n =
3 mice, 9 fields. mean + SEM, student’s t-test. (L. to P) Data were collected from female mice. P14, cortical layer 2/3,
Ctrl; n = 3 mice, 28 cells, ALP; n = 3 mice, 27 cells. mean + SEM, student’s t-test. (Q) The quantification of the number
of IBA1-positive cells in the layer 2/3 of cerebral cortex. Ctrl; n = 3 mice, 9 fields, ALP; n = 3 mice, 9 fields. mean +
SEM, student’s t-test. Ctrl: vehicle (PBS).

Description

Microglia are resident immune cells in the central nervous system. It is well established that microglia play essential roles
in neurodevelopment, including synaptic pruning, debris phagocytosis, and neural circuit formation (Li and Barres, 2018;
Prinz et al., 2021). Microglia originate from erythromyeloid progenitor cells (EMPs), which are derived from the yolk sac
at embryonic day 7.5 (E7.5) and infiltrate the brain primordium at E9.5 through the immature circulatory system (Ginhoux
et al., 2010). During this embryonic period, microglial progenitors exhibit macrophage-like morphology without distinct
processes. Subsequently, postnatal microglia develop complex morphology by forming new processes and branches
(Perez-Pouchoulen et al., 2015). Such dramatic microglial transformation requires dynamic alterations in the cytoskeleton
and lipid organization. Also, the morphological changes demand substantial energy sources, including ATP and GTP. ATP
and GTP serve as essential energy sources for a wide range of cellular functions. These nucleotides are synthesized
through several pathways, including mitochondrial respiration and purine metabolism. The purine metabolic pathway
consists of two principal routes: the de novo pathway and the salvage pathway. In the de novo pathway, purine nucleotides
are synthesized from phosphoribosyl pyrophosphate, consuming large amounts of ATP. On the other hand, the salvage
pathway recycles purine byproducts, such as hypoxanthine and guanine, and produce purine nucleotides, inosine
monophosphate (IMP) and guanosine monophosphate (GMP) without consuming lots of energy. In the context of high
demands of energy, such as developmental stages, salvage pathway activity is important for the generation of energy
source and nucleic acids (Sekine et al., 2024; Tran et al., 2024).

Disruption of purine metabolism can lead to various diseases due to excess uric acid production, resulting in conditions
such as gout and hyperuricemia (Torres and Puig, 2007). For gout and hyperuricemia, allopurinol (ALP), a structural
isomer of hypoxanthine, is a widely used treatment (Pacher et al., 2006). ALP acts as a competitive inhibitor of xanthine
oxidase (XO), an enzyme that catalyzes the reaction of hypoxanthine to xanthine and xanthine to uric acid (Figure 1A),
reducing uric acid levels and alleviating symptoms. Based on these characteristics, inhibition of XO by ALP can leads to
the accumulation of intracellular hypoxanthine. Our previous in vitro studies have suggested that treatment with
hypoxanthine changes cellular morphology of microglial cell line, BV2 (Okajima et al., 2020). Thus, we hypothesized that
elevating hypoxanthine affects microglial morphology in vivo. To examine this idea, we stimulated mice with ALP
intraperitoneally from postnatal day (P) 7 to P14. We then performed immunostaining for Ionized calcium-binding adapter
molecule 1 (IBA1), a marker of microglia, and analyzed microglial morphology (Figure 1B to 1E). ALP treatment
increased the summed length of microglial processes in a sex-independent manner (Figure 1F and 1L). However, the
length of maximum process, which is likely to be a primary process, remained unchanged (Figure 1G and 1M). In
addition, the average length was slightly decreased (Figure 1H and 1N). Since the summed processes were increased after
ALP treatment despite little change of maximum and average length, we speculated that ALP treatment alters the number
of branches. While process length is one indicator of microglial characteristics, morphological complexity reflected by the
number of processes and branch junctions is another critical feature. ALP treatment significantly increased both the
number of processes (Figure 11 and 10) and junctions (Figure 1J and 1P) in male and female mice. These findings suggest
that inhibition of XO activity enhances the morphological complexity of microglia during postnatal development.

Previous studies have reported that microglia occupy non-overlapping territories in the brain (Barry-Carroll et al., 2023).
This observation suggest that morphological changes may be associated with alteration in cell number or spatial
distribution. Additionally, purine metabolism is required for DNA synthesis, and its disruption impairs cell proliferation
(Diehl et al., 2022). We therefore examined whether ALP administration influences the number of microglia.
Quantification of IBA1-positive microglia revealed a trend toward increased the number in both sexes; however, the
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significant increase in male mice was observed by ALP treatment (Figure 1K and 1Q). These results suggest that the
effects of ALP on microglial development may exhibit sex-specific differences.

Our findings demonstrate that ALP treatment, commonly used for managing chronic gout and hyperuricemia, can
influence microglial morphology during postnatal development. Notably, microglia undergo significant morphological
changes during this period, transitioning from amoeboid-like forms to highly ramified forms. We observed that ALP
administration increased microglial complexity, raising the possibility that ALP has broader effects beyond its established
role in suppressing uric acid production. Previous in vitro studies from our group showed that hypoxanthine promotes
microglial process elongation. Although we did not directly measure hypoxanthine levels, it is likely that ALP treatment
causes hypoxanthine accumulation involved in microglial morphological changes. On the other hand, ALP may exert its
effects through another mechanisms. XO generates reactive oxygen species, including hydrogen peroxide and superoxide
anion, as byproducts of its enzymatic activity (Berry and Hare, 2004; Cantu-Medellin and Kelley, 2013). ALP has been
reported to reduce oxidative stress by inhibiting xanthine oxidase enzymatic activity (Farquharson et al., 2002; Kang et al.,
2006). Given the established link between oxidative stress and altered microglial characteristics (Kim et al., 2010), it is
plausible that reduced oxidative stress contributes to the morphological changes observed with ALP treatment.

Notably, we observed a sex-specific effect on the number of IBA1-positive cells, with a significant increase observed only
in male mice. However, ALP treatment affects Ibal expression levels in a sex-independent manner, which may confound
interpretation of microglial cell number. Sex differences in purine metabolism have been previously reported. For
example, Lesch Nyhan syndrome, which is a purine metabolism disorder caused by mutations in the X-linked gene
HPRT1 (hypoxanthine-guanine phosphoribosyltransferase 1), primarily affects males (Lesch and Nyhan, 1964).
Interestingly, microglial morphology and territory formation are altered by both brain region and sex (Grabert et al., 2016;
Colombo et al., 2022; Barry-Carroll et al., 2023). Among these differences in territory formation are pronounced in the
cerebral cortex. In contrast, regional differences in microglial morphology and gene expression are also observed in areas
such as the cerebellum during developmental and aged stages. In this study, we focused on layer 2/3 of the cerebral cortex;
however, it is likely that microglia in other brain regions may also be regulated by purine metabolism, and further studies
will be needed.

Taken together, our study suggests that purine metabolism may play a crucial role in shaping microglial morphology
during early postnatal development. These findings also underscore the importance of considering metabolic and sex-
dependent factors in the study of microglial biology.

Methods
Mice

The C57BL/6J mice were obtained from Japan SLC, Inc. (Shizuoka, Japan). All mice were maintained under a 12-hour
light/12-hour dark cycle (lights on at 8:00 AM) in a temperature- and humidity-controlled environment. Mice were
administrated by ALP (100 mg/kg) (A0907, Tokyo chemical industry, Japan) intraperitoneally every 24 h from P7 to
P14.

Immunohistochemistry

The mice brains were perfused with PBS and fixed overnight in 4% paraformaldehyde (PFA) in PBS. After infiltration
with 30% sucrose in PBS, the samples were embedded in Tissue-Tek OTC compound (Sakura Finetek, Tokyo, Japan) and
sectioned at a thickness of 50 pm by a cryostat (CM1950, Leica Biosystems, Wetzlar, Germany). Free-floating sections
were permeabilized and blocked with PBS containing 0.25% Triton X-100 and 5% bovine serum albumin (BSA). Primary
antibodies were incubated in PBS containing 5% BSA for 3 days [goat anti-IBA11 antibody (Abcam, Cat# ab5076,
1:200)] at 4°C. Brain sections were washed with PBS and incubated with Donkey anti-goat IgG (H+L) antibody, Alexa
Fluor 488 (Abcam, Cat# ab150129, 1:1000) for 1 hour at room temperature. Samples were mounted in VECTASHIELD
Mounting Medium (Vector Laboratories). Tissue specimens were observed using the confocal laser scanning microscope
(LSM700, Carl Zeiss) with x20 (Plan-Apochromat x20/0.8 M27) andx63 (Plan-Apochromat x63/1.4 Oil DIC M27)
objectives. Diode excitation lasers (Diode 488) were operated and directed to a photomultiplier tube (LSM T-PMT, Carl
Zeiss) through a series of bandpass filters. Z stack images (interval, 1 pm per image) were acquired using ZEN software
(Carl Zeiss). The microglial skeletal assay was assessed by the ImageJ software.

Statistical analysis and image processing

The statistical analyses were calculated by using GraphPad Prism (GraphPad Software). All image processing was
conducted by FIJI Image J 2.1.0/1.53c. The number of cells were quantified by Fiji/lmageJ software. No data were
excluded from the statistical analysis. For comparisons between two groups, we used Student’s t-test. All representative
microscopic images shown in the figures reflect at least three biological replicates.
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