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Abstract

Inducible promoters are essential tools for regulating gene expression. In fission yeast, various inducible promoter systems
have been developed over the years, aiding gene function studies. A key challenge with existing promoters is their high
expression in the “off ” state, with most systems showing only about a 10-fold difference between “on” and “off”
conditions. A recent study introduced the PenotetS tetracycline promoter system, achieving nearly a 100-fold dynamic
range. However, it was not designed to replace endogenous promoters. In this work, we have adapted the PenotetS system
to enable the replacement of gene promoters directly at their endogenous genomic locations.
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Figure 1. Tetracycline promoter cassette for replacing endogenous promeoters in S. pombe.:

(A) A graphical representation of the tetracycline promoter construct. It includes an antibiotic-resistant cassette, either
KanMX, HphMX, or NatMX, tetracycline repressor (TetR) driven by CMV promoter, a tetracycline promoter denoted by
either PenotetS or PenotetSW1-SW4 with the mECitrine fluorescent protein driven by the tetracycline promoter. (B) Wild-
type (yFS110), SW2::weel (yFS1161), and SW4::weel (yFS1162) cells were grown in either DMSO only or 2.5 pg/ml
ahTet overnight. (C) The length at septation and percent septation of cells shown in Figure 1B.
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Description

Controlling gene expression is essential for studying its regulation and functions. Promoters are among the most
commonly used tools for this purpose. These include constitutive and inducible promoters (Russell and Hall, 1983;
Russell and Nurse, 1986; Hoffman and Winston, 1989; Maundrell, 1990; Matsuyama et al., 2008; Ohira et al., 2017). A
challenge with inducible promoters is their tendency for leaky expression in the “off” state, which can complicate the
interpretation of specific phenotypes (Bge et al., 2008).

In Schizosaccharomyces pombe, the most commonly used promoters are the nmt promoters, which are induced by the
removal of thiamine (Maundrell, 1990; Maundrell, 1993). There are three different nmt promoters with varying strengths:
nmtl, the strongest, nmt41, of intermediate strength, and nmt81, the weakest (Forsburg, 1993; Basi et al., 1993). A
significant issue with nmt promoters is that they have a low dynamic range, inducing only about 10-fold above the
repressed level of expression. There is considerable expression from these promoters even when repressed in the presence
of thiamine, making them less suitable for specific experiments. Other promoters, such as ZEV have also been used to
control the expression of genes in S. pombe. The advantage of the ZEV promoter is its titratable induction in the presence
of different concentrations of beta-estradiol, with rapid induction (Ohira et al., 2017). However, ZEV also exhibits low
dynamic range, comparable to the nmt promoters.

To address this issue, researchers have developed tetracycline-inducible promoters that exhibit tighter repression and,
therefore, a greater dynamic range, approaching 100-fold (Faryar and Gatz, 1992; Erler et al., 2006; Zilio et al., 2012;
Patterson et al., 2019). However, these tetracycline promoters do not achieve the high expression levels seen with the nmt1
promoter. Another limitation of these earlier tetracycline promoters is that they require at least two different elements for
the expression control: the promoter and the tetracycline repressor, which need to be transformed separately into yeast
cells. To overcome these drawbacks, Lyu et al. modified the tetracycline promoter to create PenotetS, a system of five
different promoters with different expression levels (Lyu et al., 2024).

Additionally, they developed a system in which both the promoter and tetracycline repressor are integrated on a single
plasmid and are co-expressed. They used the fission yeast promoter enol01 and built upon it by replacing the 19-bp
sequence between the TATA box and TSS with the tetO sequence to create the enotetS promoter. They further developed
four weaker derivatives of PenotetS by introducing GC-rich stem loops at the end of the 5' UTR. These promoters were
named PenotetSWI1-SW4 (Lyu et al., 2024).

The expression level of the full strength PenotetS in the ‘on' state is similar to that of the adhl and nmtl promoters. In the
'off' state, the expression of PenotetS is 10-fold lower than that of nmtl, making it helpful in studying promoter shutoff
phenotypes. Likewise, PenotetSW2's expression resembles that of the nmt41 promoter but with a much lower off-state
expression. These promoters span a broad expression range: SW2's level is tenfold lower than PenotetS, and SW4's is one
hundredfold lower. An additional benefit of PenotetS promoters over nmt promoters is faster induction. Whereas nmt
promoters need about 16 hours of thiamine withdrawal to activate, PenotetS is activated quickly upon the addition of the
inducer anhydrotetracycline (ahTet) and the expressed protein can reach significant levels within a hour (Lyu et al., 2024).

Given these advantages, these promoters help provide a range of expression levels to study various genes and their
functions. However, the promoters developed by Lyu et al. are designed for studying genes expressed from ectopic loci.
They are not suitable for studying endogenous genes at their genomic loci. To address this limitation, we developed
plasmids that enable the replacement of endogenous promoters with PenotetS promoters.

We started by amplifying the PenotetS promoter cassettes, including the tetracycline repressor, tetracycline promoter, and
mECitrine fluorescent tag. These sequences were integrated into three different drug-resistant cassettes (KanMX, HphMX,
and NatMX). A total of 15 plasmids were constructed, each comprising five different tetracycline promoters and three
different drug-resistance cassettes. This collection allows the control of multiple genes with tetracycline promoters in a
single yeast strain, providing flexibility through the use of different drug-resistance cassettes. Additionally, the constructs
include an N-terminal mECitrine fluorescent tag. Using a single primer pair, one can replace a gene's endogenous
promoter with any of the five Penotet promoters when inclusion of the mECitrine tag is desired. However, if the tag is not
included, each Penotet promoter must be amplified using a distinct primer (Figure 1A).

To test the efficacy of these cassettes for promoter swapping, we selected the weel gene, whose expression levels are
reflected in cell length. Weel is an inhibitor of G2/M transition, and with increasing levels of Weel, cells grow longer in
G2 (Russell and Nurse, 1987; Den Haese et al., 1995; Sveiczer et al., 2000; Keifenheim et al., 2017). This phenotype can
be easily monitored by measuring the size, removing the need for fluorescent microscopy to assess protein expression. In
the current study, we used PenotetSW2 and SW4 to replace the weel promoter. When cells were grown in YES
supplemented with 2.5ng/mL ahTet, a significant increase in cell length was observed compared to growth in the absence
of ahTet (Figure 1B). Cell length at septation was measured under both conditions. In the case of the PenotetSW2::weel
strain, cell lengths increased from 9.2+1.5 pm to 47 +7.4 pm upon the addition of ahTet. Similarly, for the
PenotetSW4::weel strain, cell length increased from 8+2.1 pm to 36+4.8 pm (Figure 1C). The results indicate variable
levels of cell size increase, which correlate with the different promoter expression strengths. Under promoter shutoff
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conditions (in the absence of ahTet), both PenotetSW2::weel and PenoteSW4::weel showed tight repression, as evidenced
by reduced Weel expression, which is reflected in significantly smaller cell lengths compared to the wild type. The length
at septation for PenotetSW4::weel cells in the absence of ahTet closely resembled that of a weel null mutant, where cell
length at division is 7.6 pm (Russell and Nurse, 1987). These findings demonstrate that the dynamic range of tetracycline
promoter cassettes is a powerful tool for studying promoter shutoff phenotypes of a desired gene.

Methods
S. pombe Strains and Maintenance

S. pombe strains were created using standard methods (Forsburg and Rhind, 2006) and grown in YES at 30°C.
Anhydrotetracycline hydrochloride (J66688.MB, Thermo Fisher Scientific) was dissolved at a concentration of 5 mg/ml in
DMSO, stored at -80°C and used at a concentration of 2.5 pg/ml.

Plasmid Construction

All plasmids were constructed by the Gibson Assembly method using the Gibson Assembly master mix (E2611S, NEB).
The original tetracycline promoter plasmids pDB5318 (PenotetS,), pDB5319 (PenotetSW1), pDB5320 (PenotetSW2),
pDB5321 (PenotetSW3), and pDB5322 (PenotetSW4) were procured from Addgene (https://addgene.com). PCR was
performed  with oligos SB239 (5 TGGCGAATGG GATGGCGGCGTTAGTATC3") and SB242
(5'AAAGATCTTACAGTTTAAACGAGCTCGAATTC3') to amplify plasmids comprising drug-resistant cassette KanMX
(pFA6a-kanMX6), HphMX (pCR2.1-hph) or NatMX (pCR2.1-nat). To amplify tetracycline promoters, including
tetracycline repressor and mECitrine sequences, PCR was done with oligos SB240 (5" CGCCGCCATCCCATTCGCCA
TTCAGGCTG3') and SB243 (5'GTTTAAACTGTAAGATCTTTTGTATAGTTCATCCATGC3"). A single oligo pair was
used to amplify all tetracycline promoters (including mECitrine and tet repressor), which were cloned downstream of the
KanMX, HphMX, and NatMX cassettes. These plasmids were named as listed in Table 1. All plasmids generated in this
study were sequenced by Plasmidsaurus (https://plasmidsaurus.com/). Plasmids created in this study will be available
from Addgene (https://addgene.com) and NRBP (https://yeast.nig.ac.jp/yeast/fy/StrainAllltemsList.jsf).

Strain Construction

To construct weel promoter replacement strains, yFS110 was transformed with the following PCR products: for the
PenotetSW2 promoter swap, PCR was performed on pFS558 with oligos MO600 (5'GCATTCCAATTCAATTTAAT
TAAATCAAAAATTTCA TATCTATTTTTTTGTT AAATTGCCACATTTTCCATACAGAAAAcgacatggaggcccagaa3')
and MO603 (5'GCACGATTTAGATTCATGGAGCGTTGG GACCGCCGTAAGCCATAAG
ATCTATGACTGCTGGTATTAGAAGAAGAGctcatgctagecggccegag cggece3'), and for PenotetSW4, PCR was performed
on pFS560 with oligos MO600 and MO602 (5'GCACGATTTAGATTCATGGAGCGTTGGGACCGCCGTAAGC
CATAAGATCTATGACT GCTGGTATTAGAAGAAGAGCTCAtcatgctagccgggcccgagce 3'). Oligo regions that bind to the
plasmid are shown in lowercase italics, while regions that target the weel genomic sequence are shown in uppercase. PCR
products were transformed using electroporation (Torres-Garcia et al., 2020). Transformants were selected on YES
Hygromycin  (50mg/ml).  Strains  created in  this study will be  available from  NRBP
(https://yeast.nig.ac.jp/yeast/fy/StrainAllTltemsList.jsf).

Reagents

Strain Name Genotype Reference

yFS110 h- leu1-32 ura4-D18 ade6-216 his7-366 lab stock

yFS1161 h- leul-32 ura4-D18 ade6-216 his7-366 PenotetSW2:Weel::HPHMX this paper

yFS1162 h- leu1-32 ura4-D18 ade6-216 his7-366 PenotetSW4:Weel::HPHMX this paper

Plasmid Name |Description Reference
pFA6a-kanMX6 |KanMX drug cassette (Béhler et al., 1998)
pCR2.1-hph HphMX drug cassette (Sato et al., 2005)
pCR2.1-nat NatMX drug cassette (Sato et al., 2005)
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pDB5318 PenotetS promoter (Lyu et al., 2024)
pDB5319 PenotetSW1 promoter (Lyu et al., 2024)
pDB5320 PenotetSW2 promoter (Lyu et al., 2024)
pDB5321 PenotetSW3 promoter (Lyu et al., 2024)
pDB5322 PenotetSW4 promoter (Lyu et al., 2024)
pFS551 KanMX PenotetS promoter cassette this paper
pFS552 KanMX PenotetSW1 promoter cassette this paper
pFS553 KanMX PenotetSWZ2 promoter cassette this paper
pFS554 KanMX PenotetSW3 promoter cassette this paper
pFS555 KanMX PenotetSW4 promoter cassette this paper
pFS556 HphMX PenotetS promoter cassette this paper
pFS557 HphMX PenotetSW1 promoter cassette this paper
pFS558 HphMX PenotetSW2 promoter cassette this paper
pFS559 HphMX PenotetSW3 promoter cassette this paper
pFS560 HphMX PenotetSW4 promoter cassette this paper
pFS561 NatMX PenotetS promoter cassette this paper
pFS562 NatMX PenotetSW1 promoter cassette this paper
pFS563 NatMX PenotetSW2 promoter cassette this paper
pFS564 NatMX PenotetSW3 promoter cassette this paper
pFS565 NatMX PenotetSW4 promoter cassette this paper
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