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Juvenile hormone mimics induce a cellular immune response in
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Abstract

It is well-known that exposure to juvenile hormone mimics induces a variety of aberrant developmental and physiological
effects in insects. One such effect in Drosophila melanogaster is the appearance of melanized tumor-like structures in larval
stages. To understand the nature of these tumors and identify the constituent cell-types, we examined the effects of two
juvenile hormone mimics, methoprene and pyriproxyfen, and found that both mimics induce hematopoietic tumors in flies in a
consistent manner. These effects are not observed in flies lacking functional receptors for the juvenile hormone signaling
pathway. Using cell-type-specific markers, we found that the juvenile hormone mimic-induced tumors are composed mainly of
lamellocytes, a specialized blood cell type that normally differentiates in response to parasitoid wasp infection. Surprisingly
however, the larvae without functional juvenile hormone receptors are able to mount a robust encapsulation response when
exposed to parasitoid wasps. These results suggest that juvenile hormone mimics require juvenile hormone receptor function
to activate cellular immunity and raise new questions about the effect of juvenile hormone mimics on hematopoietic
development.
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Figure 1. Juvenile hormone mimics (JHMs) induce melanotic tumors through the induction of specialized hemocytes
called lamellocytes:

(A) Two different JHMs, methoprene (M) and pyriproxyfen (P), induce melanotic tumors in Canton-S and Oregon-R (Ore-R)
wildtype larvae at a higher rate than ethanol (E) vehicle alone. Percentage of prepupae with tumors, calculated for each
genotype and treatment is shown. Bars represent standard deviation of three biological replicates. Differences between
Canton-S and Ore-R tumor induction rates were not statistically significant; Chi-square test. (B) Prepupae with melanotic

tumors. Arrows point to tumors. (C) A mutant strain that lacks sensitivity to JHMs, Met! gceMi, makes fewer tumors after
exposure to methoprene or pyriproxyfen than balancer controls. Points represent the number of tumors per animal (n is the
number of animals examined); Wilcox test. (D) In vivo visualization of a lamellocyte reporter msn-mCherry. In an ethanol
treated wandering third instar larva, posterior msn-mCherry signal is observed, while by 24 hours after methoprene treatment,
lamellocytes are found throughout the body. Representative data from more than 6 biological replicates with 10 samples each.
(E, F) Circulating hemocytes in wandering third instar larva are primarily plasmatocytes (green, eater-GFP) unless treated
with methoprene or pyriproxyfen (red, msn-mCherry). Plasmatocytes and lamellocytes can also be identified by cell shape and

size. (F) Close-up of methoprene induced lamellocytes and a tumor covered in lamellocytes. Nuclei labelled in blue (Hoechst).

(G) Circulating hemocytes from Met?” gce2'5k mutants do not include lamellocytes after methoprene treatment. Each point

represents the number of lamellocytes scored for one larva. n is the number of larvae scored; Wilcox test. (H, I) Met and gce
are not required to encapsulate parasitoid wasp, Leptopilina pacifica, eggs. (H) Homozygous or hemizygous mutant Met!

gceMi larvae encapsulate wasp eggs at the same rate as controls. Bars represent standard deviation. n is the number of infected
larvae examined, from 7 independent infections. (t-test). (I) Encapsulated wasp eggs (top) or circulating hemocytes (bottom)
from control and mutant wandering third instar larva. Because lamellocytes have high levels of F-actin, strong rhodamine-
Phalloidin signal indicates their presence in the melanized capsules. Arrows point to lamellocytes. Red: Phalloidin, Blue:
Hoechst. For panels (A, C, G, H) p-values: * p<0.05, **p<0.01, ***p<0.001, NS = not significant.
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Description

Juvenile hormone (JH) is an important coordinator of development in insects, moderating the effects of another major
hormone, ecdysone, at each molt (Riddiford, 2020). Due to JH’s many roles in development, behavior and reproduction in
insects, molecules functionally similar to JH, the juvenile hormone mimics (JHM) methoprene and pyriproxyfen, are widely
used insecticides for controlling disease vectors and agricultural pests (Lawler, 2017; Martin et al., 2024). A suite of
developmental defects occurs in Drosophila melanogaster after JH or JHM exposure (Ashburner, 1970; Riddiford &
Ashburner, 1991). These defects include failure to eclose from the pupal case, morphogenesis defects of adult tissues,
degeneration of the photoreceptors and production of melanotic tumors (Postlethwait, 1974; Restifo & Wilson, 1998; Wilson

& Fabian, 1986). Induction of these tumors can be reduced in Met! and Met? mutants lacking the juvenile hormone receptor,
Methoprene-tolerant (Met) (Wilson & Fabian, 1986). Similar looking melanotic tumors have been shown to form in various

Drosophila mutants, most well-known being hopscotchumorous-lethal (o nTum-ly ‘\yith constitutively active JAK-STAT immune

signaling (Harrison et al., 1995). The hopT”m'I tumors are caused due to overproliferation of the hematopoietic tissue and
ectopic lamellocyte differentiation (Luo et al., 1995; Panettieri et al., 2019).

The cellular immune system in D. melanogaster consists of three major hemocyte cell types. The majority (95%) of the cells
are plasmatocytes (10-20 pm) that function as macrophages (Gold & Briickner, 2015). Platelet-like and oxygen carrying
crystal cells make up the rest of the hemocytes (Shin et al., 2024). Under assault by parasitoid wasps, a third type of hemocyte,
called lamellocytes, is induced. In a classic cellular immune response, these large, flat hemocytes (40-50 pm in size), surround
parasitoid wasp eggs that are laid inside the larval hemocoel and encapsulate to kill the parasite, allowing the host to survive
(Rizki & Rizki, 1979; Sorrentino et al., 2002).

Ecdysone and JH have known roles in Drosophila immunity (Flatt et al., 2008; Keith, 2023; Nunes, Koyama, et al., 2021;
Nunes, Sucena, et al., 2021; Regan et al., 2013; Sorrentino et al., 2002; Tian et al., 2010; Zhang & Palli, 2009). Even though
the JHM melanotic tumor response has been known for over 40 years, the cell types making up these tumors and the

mechanisms underlying their appearance have not been investigated. Based on their apparent similarities in size and locations

to blood tumors in hopT”m'l mutants, we hypothesized that JHM exposure might affect the fly’s hematopoietic system, increase

the abundance of the lamellocytes (even in the absence of parasitoid infection), and thus trigger tumorogenesis. We
investigated if lamellocytes are induced by exposure to methoprene or pyriproxyfen and if the induced tumors were composed
of lamellocytes.

We tested if two JHMs, methoprene and pyriproxyfen, induce tumors in wildtype Drosophila strains, Canton-S and Oregon-R,
and found that this phenomenon is induced by both JHMs in a similar manner (Figure 1A). A range of small, medium and
large tumors arise in both fly strains (Figure 1B). Met mutants are resistant to both methoprene (Wilson and Fabian, 1986) and
pyriproxfen (Riddiford & Ashburner, 1991). Since the original report of methoprene induced melanotic tumors, a second copy
of the JH receptor gene was found in the Drosophila melanogaster genome, germ cell expressed (gce) (Abdou et al., 2011). To

examine their roles in JHM-induced tumorigenesis, we treated a mutant Met™ gce™ line that lacks both juvenile hormone
receptors with JHMs. Met™ gce™ escapers have reduced fecundity and germ cell migration defects (Barton et al., 2024). Met
gce” larvae produced almost no tumors (Figure 1C).

To examine if lamellocytes are a major constituent of the tumors, we utilized an in vivo lamellocyte marker, msn-mCherry
(Tokusumi, Shoue, et al., 2009) to visualize these cells. Under non-immune challenged conditions, third instar larvae do not
produce lamellocytes and only the background msn-mCherry signal is observed. However, following methoprene treatment,
lamellocytes are seen throughout the larvae (Figure 1D). Next, we examined circulating hemocytes from larvae with
plasmatocytes labelled with eater-GFP (Kroeger Jr. et al., 2012) and lamellocytes labelled with msn-mCherry. Smears of
ethanol treated control larvae contain plasmatocytes, while those of methoprene and pyriproxyfen treated larvae contain both
plasmatocytes and lamellocytes (Figure 1E, F). JHM treated tumors are composed of many lamellocytes (Figure 1D, F). Thus
lamellocytes are not found in ethanol treated controls but are found in large amounts in both methoprene and pyriproxyfen

treated animals. After methoprene treatment, Met™ gce™ larvae did not form lamellocytes, either (Figure 1G). These results
suggest that the JH receptors mediate the sensitivity to JHM required to induce melanotic tumors made of aggregated
lamellocytes.

Since lamellocytes did not form in the Met™ gce” mutants under ectopic JHM treatment, we tested if wild type Met and Gce
functions are required for lamellocyte differentiation induced upon exposure to the parasitoid wasp Leptopilina pacifica
(Indonesia, Lp-Indo) (Novkovi¢ et al., 2011). Met™ gce™ stocks are maintained with an X-chromosome balancer due to reduced
viability and fecundity. The marker Tubby (Tb) was used to distinguish between mutant and control larvae. The encapsulation
capacity of internal control FM7a-Tb balancer larvae, shows that 85 + 6.9% of larvae produced one or more melanized capsule
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and 89 + 11.6 of Met™ gce™ larvae mount a similar response (Figure 1H). Lp-Indo eggs dissected from Met™ gce™ larvae are
encapsulated by lamellocytes, similar to eggs dissected from the balancer control larvae (Figure 1I, top panels). The
rhodamine-Phalloidin signal in these samples varies due to different capsule morphologies and differing levels of
melanization. Lamellocyte morphology is observed more clearly in circulating hemocyte smear preparations (Figure 11,

bottom panels, arrows). Met™ gce” mutants were also capable of encapsulating Leptopilina boulardi eggs, 11 + 9.6% of infected
larvae examined compared to 22 + 27.2% of balancer control; Chi-square test p=0.22.

Our results clearly demonstrate that exposure to either methoprene or pyriproxyfen induces a cellular immune response in
Drosophila larvae. This response is reproducible and robust. While Met and Gce are required for the ectopic cellular immune
responses induced by JHM treatments, the receptors appear to be dispensable for the wasp-induced lamellocyte differentiation

response. The simplest interpretation of these observations is that, like hopT“m'I, (Bailetti et al., 2019; Panettieri et al., 2019)
the JHMs expand the hematopoietic pool that triggers the differentiation of hemocytes. We hypothesize that the JHM
sensitivity that induces lamellocytes may be required in a non-hematopoietic tissue such as the fat body or muscles that would
then signal to the lymph gland, prohemocytes and hemocytes. Future work will shed more light on the mechanism of action of
JHMs on hematopoietic development, as these insecticides become more important in pest control in the warming climate. A
role for JH signaling in hematopoietic development cannot be ruled out and needs to be investigated more thoroughly.

Methods
Fly stocks and rearing

Flies were reared at 25°C on Archon Scientific molasses food (86% water, 0.57% agar, 6.3% cornmeal, 1.5% yeast, 4.7%
molasses, 0.4% propionic acid, 0.15% methylparaben, 0.5% ethanol). Each 28.5 mm diameter polystyrene vial contained 12
mL of food (Catalog #B20301).

Oregon-R (Ore-R) BDSC 25211 and Canton-S BDSC 64349 were obtained from the Bloomington Drosophila Stock Center.

Met! gceMi027 42/FM7a-Tb (Barton et al., 2024) was a gift from L. Barton. Met?” gce2'5/FM7a—Tb (Abdou et al., 2011); was a
gift from L. Riddiford. The msn-mCherry (Tokusumi, Sorrentino, et al., 2009), MSNF9mo-mCherry eater-GFP (Schmid et al.,
2016; Sorrentino et al., 2007) stocks were obtained from R. Schulz and D. Hultmark, respectively. We used FlyBase (release
FB2025_03) to find information on mutant phenotypes and Drosophila stocks (Oztiirk-Colak et al., 2024).

JHM treatments and tumor scoring

Drosophila adults were allowed to lay eggs for a maximum of 48 and then removed. 25 pL of ethanol (control), methoprene (1
pg/pL in ethanol, Chem Service Inc N-12400) or pyriproxyfen (0.2 pg/pL in ethanol, Fisher Scientific NC0050502) was
evenly distributed over the vial surface when the larvae reached the late second or early third instar larvae. These doses are
similar to those used in (Baumann et al., 2017; Restifo & Wilson, 1998). These doses of methoprene and pyriproxyfen allowed
for continued development until pharate adult stage but caused a 100% failure of Canton-S and Ore-R to eclose as adults.

Tumors were scored at wandering third instar and prepupal stages as in (Wilson & Fabian, 1986) using Leica EZ4
stereomicroscope and photographed using LAS EZ software. In vivo induction of lamellocytes was observed with the msn-
mCherry marker. Wandering third instars were placed on a glass dish, put at -20°C for 20 seconds to immobilize them and
imaged using a Zeiss Discovery.V8 stereomicroscope.

Hemocytes and imaging

Hemocyte smears, tumors, and wasp capsules from dissected wandering third instar larvae were prepared as follows. Animals
were washed in water, 70% ethanol, and phosphate-buffered saline, pH 7.6 (PBS). They were placed on a microscope slide and
hemolymph contents were bled, air dried (30 min), and fixed in 4% paraformaldehyde. After washing off the fixative with
PBS, hemocytes were stained with Hoechst 33258 (Invitrogen, 1:500) and Rhodamine or Alexa Fluor 488-tagged Phalloidin
(Invitrogen). Samples were mounted in VectaShield (Vector Laboratories). Hemocytes were identified by their high F-actin
staining signal and distinctive shape. We also utilized Drosophila strains with in vivo labelled plasmatocytes (visualized with
the eater-GFP reporter), and lamellocytes (with msn-mCherry reporter). These hemocyte smears were counterstained with
Hoechst 33258. Samples were imaged using a Zeiss LSM 800 confocal microscope. Images were then imported into FIJI
(Schindelin et al., 2012) and converted into a jpg file.

Lamellocyte counting

Hemocytes from Met?” gce®/Y and FM7c-GFP/Y wandering third instar larva from the same treated vials were collected as
described above. Hemocytes from a single larva were collected in 100 pL. of PBS and 10 pL. were immediately transferred to
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hemocytometers (Fisher Scientific NC0435502). Lamellocytes were identified using brightfield microscopy based on
morphology and size. Total count was estimated by multiplying the hemocytometer count by 10.

Wasps and encapsulation assays

Leptopilina pacifica (Indonesia: Lp-Indo from T. Schlenke), (Lue et al., 2021; Novkovi¢ et al., 2011) wasps were reared on D.
virilis on corn meal Archon food. Met! gceMi/FM7a—Tb flies were allowed to lay eggs for 48 hours. Flies were removed and
larvae incubated at 25°C to develop for 48 hours. Late second and early third instar larvae were exposed to Lp-Indo wasps for
24 hours. After removing the wasps, the encapsulation response was scored 24 hours later. For encapsulation scoring, larvae
were removed from the food, cleaned with 70% ethanol, distilled water and PBS in 9-well plates. Using a stereomicroscope,
larvae were dissected individually with forceps by gently tearing the cuticle. Larval contents were examined for the presence
of wasp eggs, wasp larvae, melanized aggregates, or melanized capsules. Percent encapsulation was computed as number of
infected hosts with melanized capsules and aggregates relative to the number of infected hosts scored.

Data visualization and statistics
Statistical analyses were run in R version 4.4.1 (R Core Team, 2021). Graphs were made with ggplot2 (Wickham, 2016).

Acknowledgements: We thank Lacy Barton, Robert Schulz, Dan Hultmark, Todd Schlenke and Lynn Riddiford for
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