

Measurement of NAD(H) concentration using BCA dye and applications to assays of dehydrogenases

Umanga Rupakheti¹, Derian Andrew², Sara E Scanlan², Jackson Tester³, Christopher E Berndsen^{2§}

Abstract

Dehydrogenases are a widespread enzyme family that play essential roles in all metabolic processes. We observe that one of the substrates of many dehydrogenases, the coenzyme NAD(H), reacts with copper in the bicinchoninic acid assay to produce a color change that can be measured spectroscopically. NADH reacts across a lower concentration range in this assay ($<1~\mu M$ to $\sim50~\mu M$) compared to NAD⁺ ($>100~\mu M$), which allows the bicinchoninic acid (BCA) assay to be used to measure dehydrogenase activity, as demonstrated in assays with human malate dehydrogenase 1.

¹Department of Biology, James Madison University, Harrisonburg, Virginia, United States

²Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, Virginia, United States

³Biotechnology Program, James Madison University, Harrisonburg, Virginia, United States

[§]To whom correspondence should be addressed: berndsce@jmu.edu

11/19/2025 - Open Access

Figure 1. Measurement of NADH concentration in a BCA assay:

(A) Titration of NAD⁺ (purple), NADH (gold), and oxaloacetate (red). The large dots are for assays performed with a 4:1 BCA reagent to sample ratio, while the smaller, lighter dots are for assays using a 1:1 and 2:1 reagent:sample ratio. (B) Overview of assaying MDH activity using the BCA assay (C) MDH assays using BCA reagent. The control assays containing no oxaloacetate are shown in black, while the replicate active enzyme assays are shown in shades of blue. The inset shows an absorbance assay at 340 nm under the same conditions as those used with the BCA reagent to detect activity. The data are representative of 5 separate trials performed by three individuals.

Description

The bicinchoninic acid assay (BCA assay) is a common assay of protein concentration and reducing sugars (Garcia et al., 1993; Smith et al., 1985). The assay is based on the reduction of Cu(II) to Cu(I) by proteins or sugars, followed by the association of Cu(I) with bicinchoninic acid, which develops a visible purple color that can be measured at 562 nm (Huang et al., 2010; Smith et al., 1985; Wiechelman et al., 1988). While several small molecules are known to interfere with the reduction of copper, NAD+ and NADH, which are associated with numerous redox reactions in cells, are not listed in the commercial kits (Brown et al., 1989). While we were attempting to assay the activity of beta-amylase in complex with malate dehydrogenase (MDH) using the BCA dye, we observed high BCA absorption in the presence of the MDH enzyme substrates. We then separately titrated NAD⁺ and NADH into BCA dye, heated the mixture, and measured the absorbance at 562 nm (Figure 1A). We found that NADH exhibited a noticeably greater ability to reduce copper, resulting in a more pronounced color change than NAD⁺ (Figure 1A). The absorbance of NAD⁺ was dependent in part on the amount of BCA reagent added and could be suppressed by increasing the ratio of BCA dye to sample added. Under all conditions, NAD⁺ produced less of a color change than NADH (Figure 1A). When we used 200 μL of BCA reagent with 50 μL of NAD(H) sample, we observed the largest separation in the concentration range where NAD(H) produced a color change. Under these conditions, the linear range where NADH produced a color change was 0 to 50 μM. At ~1 μM NADH, the difference between the background and sample absorbance was ~0.1, suggesting the potential for submicromolar detection of NADH using BCA dye.

Having demonstrated the differential effects of NAD+ and NADH in the BCA assay, we then set out to test whether we could utilize these differences to assay NAD(H)-dependent enzyme activity. Dehydrogenase enzymes are prevalent in biology and are of interest in both industrial and pharmaceutical industries (Baird et al., 2024; Fermaintt & Wacker, 2024; Martinez-Vaz et al., 2024; Parente et al., 2024; Reyes Romero et al., 2021; Springer et al., 2024). Thus, a simple and relatively inexpensive colorimetric enzyme assay for dehydrogenase enzymes could be helpful in instances when the traditional assay, which measures changes in absorbance by NAD(H) at 340 nm, is not feasible due to a lack of equipment or substances that absorb near 340 nm. During assay development and optimization, we first confirmed that the BCA reagent quenched the MDH reaction, finding no measurable activity above background when the BCA reagent was added before starting the assay. BCA working reagent from Fisher Scientific (catalog # PI23225) contains sodium hydroxide and has a pH of 10.5, which is outside the active pH range of many MDH enzymes; thus, the BCA working reagent should quench any enzyme activity (de Lorenzo et al., 2024). Because the enzyme can also react with the BCA working reagent, our control assays lacked oxaloacetate. Oxalocetate has no measurable reaction with copper or BCA dye relative to NADH at concentrations below 2 mM, which is the typical working maximum for most MDH assays, as MDH enzymes exhibit substrate inhibition by oxaloacetate (Bernstein & Everse, 1978; de Lorenzo et al., 2024; Shimozawa et al., 2022) (Figure 1A).

Having developed the conditions to ensure BCA absorbance at 562 nm was due to enzyme activity, we then tested whether we could measure MDH activity in the NADH and oxaloacetate to NAD $^+$ and malate direction. The general assay procedure is outlined in Figure 1B. The enzyme reaction and control reaction were assembled and incubated at 22°C. At appropriate time points, 50 μ L of the enzyme or control reaction was removed and quenched in 200 μ L of BCA on ice. After completion of the assay, all quenched reactions were incubated at 50°C for 10 minutes. After heating, 150 μ L was transferred to the plate, and the absorbance was measured. As shown in Figure 1C, we observed a decrease in absorbance at 562 nm, consistent with the loss of NADH, in the presence of MDH and oxaloacetate, but not when oxaloacetate was lacking from the reaction mix. At the 5 minute mark, both types of assays had reduced absorbance by about 30% of the starting signal suggesting the BCA assay showed a comparable ability to detect enzyme activity as the traditional continuous 340 nm assay method.

Ultimately, these data show that the well-established BCA assay method can detect the presence of NADH with sensitivity comparable to the traditional spectroscopic assay method. Further, investigators should exercise caution when using BCA reagent in the presence of NAD(H)-containing solutions.

Methods

11/19/2025 - Open Access

BCA working reagent was prepared by mixing 50 mL of reagent A with 1 mL of reagent B. These reagents were a part of the kit from Fisher Scientific (catalog # PI23225). NAD⁺ and NADH were prepared in distilled water, and their concentrations were determined using the extinction coefficient at 260 nm of 16,400 M⁻¹ cm⁻¹. Oxaloacetate was prepared daily in 0.1 N HCl (Hatch & Heldt, 1985).

BCA assay data were collected using a Biotek Eon microplate reader at 562 nm in a 96-well plate. Typical well volumes were 150 μ L. Stocks of NAD⁺ or NADH in water or oxalacetate prepared in 0.1 N HCl were diluted in water to the assay concentration. Subsequently, 50-200 μ L of each dilution was added to the BCA working reagent, and the samples were processed as follows for enzyme assays to develop the color change and collect data.

Enzyme assays were performed at pH 8 in 50 mM sodium phosphate and contained 200 μ M oxaloacetate, 100 μ M NADH, and 0.2 μ M purified, recombinant human malate dehydrogenase 1. Assays were incubated in a water bath at 22 °C, and 50 μ L was removed at the indicated time points in Figure 1C and put into 200 μ L of BCA working reagent. Quenched reactions were left on ice until all the time points were collected. Quenched time points were then incubated at 50 °C for 15 minutes, after which 150 μ L was transferred to a 96-well plate for data collection. Data were analyzed and plotted in R.

Acknowledgements: We thank Dr. Joseph Provost for comments on the final version of this work.

References

Baird LM, Berndsen CE, Monroe JD. 2024. Malate dehydrogenase in plants: evolution, structure, and a myriad of functions. Essays in Biochemistry 68: 221-233. DOI: 10.1042/EBC20230089

Bernstein LH, Everse J. 1978. Studies on the mechanism of the malate dehydrogenase reaction.. Journal of Biological Chemistry 253: 8702-8707. DOI: <u>10.1016/s0021-9258(17)34234-5</u>

Brown RE, Jarvis KL, Hyland KJ. 1989. Protein measurement using bicinchoninic acid: elimination of interfering substances. Analytical Biochemistry 180: 136-139. DOI: <u>10.1016/0003-2697(89)90101-2</u>

de Lorenzo L, Stack TMM, Fox KM, Walstrom KM. 2024. Catalytic mechanism and kinetics of malate dehydrogenase. Essays in Biochemistry 68: 73-82. DOI: <u>10.1042/EBC20230086</u>

Fermaintt CS, Wacker SA. 2024. Malate dehydrogenase as a multi-purpose target for drug discovery. Essays in Biochemistry 68: 147-160. DOI: 10.1042/EBC20230081

GARCIA E, JOHNSTON D, WHITAKER JR, SHOEMAKER SP. 1993. ASSESSMENT OF ENDO-1,4-BETA-D-GLUCANASE ACTIVITY BY A RAPID COLORIMETRIC ASSAY USING DISODIUM 2,2'-BICINCHONINATE. Journal of Food Biochemistry 17: 135-145. DOI: 10.1111/j.1745-4514.1993.tb00463.x

Hatch MD, Heldt HW. 1985. Synthesis, storage, and stability of [4-14C] oxaloacetic acid. Analytical Biochemistry 145: 393-397. DOI: $\underline{10.1016/0003-2697(85)90379-3}$

Huang T, Long M, Huo B. 2010. Competitive Binding to Cuprous Ions of Protein and BCA in the Bicinchoninic Acid Protein Assay. The Open Biomedical Engineering Journal 04: 271-278. DOI: 10.2174/1874120701004010271

Martinez-Vaz BM, Howard AL, Jamburuthugoda VK, Callahan KP. 2024. Insights into the regulation of malate dehydrogenase: inhibitors, activators, and allosteric modulation by small molecules. Essays in Biochemistry 68: 173-181. DOI: 10.1042/EBC20230087

Parente AD, Bolland DE, Huisinga KL, Provost JJ. 2024. Physiology of malate dehydrogenase and how dysregulation leads to disease. Essays in Biochemistry 68: 121-134. DOI: <u>10.1042/EBC20230085</u>

Reyes Romero A, Lunev S, Popowicz GM, Calderone V, Gentili M, Sattler M, et al., Groves. 2021. A fragment-based approach identifies an allosteric pocket that impacts malate dehydrogenase activity. Communications Biology 4: 10.1038/s42003-021-02442-1. DOI: 10.1038/s42003-021-02442-1

Shimozawa Y, Matsuhisa H, Nakamura T, Himiyama T, Nishiya Y. 2022. Reducing substrate inhibition of malate dehydrogenase from *Geobacillus stearothermophilus* by C-terminal truncation. Protein Engineering, Design and Selection 35: 10.1093/protein/gzac008. DOI: 10.1093/protein/gzac008

Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, et al., Klenk. 1985. Measurement of protein using bicinchoninic acid. Analytical Biochemistry 150: 76-85. DOI: 10.1016/0003-2697(85)90442-7

Springer AL, Agrawal S, Chang EP. 2024. Malate dehydrogenase in parasitic protozoans: roles in metabolism and potential therapeutic applications. Essays in Biochemistry 68: 235-251. DOI: <u>10.1042/EBC20230075</u>

Wiechelman KJ, Braun RD, Fitzpatrick JD. 1988. Investigation of the bicinchoninic acid protein assay: Identification of the groups responsible for color formation. Analytical Biochemistry 175: 231-237. DOI: 10.1016/0003-2697(88)90383-1

11/19/2025 - Open Access

Funding:

Supported by U.S. National Science Foundation (United States) MCB RUI-2322867 to CEB. Supported by U.S. National Science Foundation (United States) DUE-2221277 to UR.

Author Contributions: Umanga Rupakheti: investigation, writing - review editing. Derian Andrew: investigation, writing - original draft. Sara E Scanlan: writing - review editing, visualization, investigation. Jackson Tester: investigation. Christopher E Berndsen: conceptualization, project administration, writing - review editing, visualization, supervision, funding acquisition, formal analysis, investigation, writing - original draft.

Reviewed By: Anonymous

History: Received September 1, 2025 **Revision Received** November 12, 2025 **Accepted** November 17, 2025 **Published Online** November 19, 2025 **Indexed** December 3, 2025

Copyright: © 2025 by the authors. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International (CC BY 4.0) License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Citation: Rupakheti U, Andrew D, Scanlan SE, Tester J, Berndsen CE. 2025. Measurement of NAD(H) concentration using BCA dye and applications to assays of dehydrogenases. microPublication Biology. 10.17912/micropub.biology.001831