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Abstract

We report the isolation and genomic sequencing of nine Actinomycetota obtained from both cave biofilms and trogloxenic
Ceuthophilus (cave crickets). Strains were isolated from samples via actinomycetota-selective media and sequenced using
nanopore sequencing. Provisional taxonomic inference of strains was performed by whole genome phylogenetic analysis,
revealing a broad range of genera, with most strains clustering with known genera with digital DNA-DNA hybridization
values less than 70%, and one strain not clustering with known genera. An analysis of secondary metabolism reveals the
quantity and diversity of secondary metabolism in cave Actinomycetota.
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Figure 1. Isolation and characterization of hypogean Actinomycetota:

A. Ceuthophilus and wall biofilms collected from expeditions for this study in Hardin’s Cave and Snail Shell Cave,
respectively. B. Images of isolated strains growing on agar. C. Example of taxonomic estimation of IBHARDOO1, the
most divergent actinomycete isolated in this study. Tree inferred with FastME 2.1.6.1 (Lefort, Desper, & Gascuel, 2015)
from GBDP distances calculated from genome sequences. The branch lengths are scaled in terms of the GBDP distance
formula ds. The numbers on the above branches are GBDP pseudo-bootstrap support values > 60 % from 100 replications,
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with an average branch support of 85.8 %. The tree was rooted at the midpoint (Farris, 1972). D. Secondary metabolic
potential quantified by antiSMASH (Blin et al., 2025). BGC for major classes are nonribosomal peptide synthetase
(NRPS), polyketide synthase (PKS), lantipeptides, terpenes, and “others”.

Description

The Actinomycetota phylum has been historically prolific in producers of bioactive secondary metabolites with clinical
application (Yi, Shi, Cao, & Pan, 2025). Many antibiotics and anticancer drugs are bacterial secondary metabolites,
derived from secondary metabolites, or address a target of a secondary metabolite (Newman & Cragg, 2020). For
example, while first discovered in fungal strains, the B-lactam antibiotics, including penicillins, cephalosporins, clavams,
and carbapenems, are also produced by various strains of Actinomycetota (Lewis et al., 2024). Anticancer secondary
metabolites produced by Actinomycetota have roles in the treatment of a variety of cancer types. Daunomycin, used in the
treatment of Acute Myeloid Leukemia and other cancers (Lewis et al., 2024), is produced by Streptomyces (Hutchinson,
1997). Carfilzomib, a derivative of epoxomicin, is a treatment for multliple myeloma produced by Streptomyces (Schorn
et al., 2014). However, after decades of mining for bioactive secondary metabolites, the rates of discovery of novel
compounds have slowed (Pye, Bertin, Lokey, Gerwick, & Linington, 2017).

Most Actinomycetota have been isolated from terrestrial ecosystems. The slowing rate of compound discovery is
correlated with the slowing rate of discovery of novel Actinomycetota. It has been demonstrated that novel microbial taxa
are more likely to produce novel chemistry (Yi et al., 2025). Moreover, metagenomic studies suggest a large reservoir of
Actinomycetota remains to be cultivated (Bull & Goodfellow, 2019). Novel taxa can be discovered by developing new
culture techniques or isolating strains from previously uninvestigated ecosystems.

In previous work, we have isolated novel bioactive secondary metabolites from cave actinomycetota (Covington,
Spraggins, Ynigez-Gutierrez, Hylton, & Bachmann, 2018; Derewacz et al., 2014; Earl et al., 2018). Herein, we investigate
the potential of cave ecosystems for the discovery of Actinomycetota strains with the potential to produce secondary
metabolites. Our goal was to investigate two sources, cave microbial biofilms and trogloxenic insects, in particular cave
crickets (Ceuthophilus), via Actinomycetota selective culture conditions, nanopore sequencing of isolated strains, and
analysis of secondary metabolic biosynthetic gene clusters.

Two caves were targeted for this study. Hardin’s Cave, privately owned, and Snail Shell Cave, managed by the
Southeastern Cave Conservancy. Hardin's Cave is a 3.5-mile relatively dry cave. Snail Shell cave comprises over nine
miles of surveyed passages and is characterized by extensive flowing water passages, many of which require a boat for
passage. Both cave ecosystems utilize allochthonous carbon input from the forest soil ecosystem. To collect samples from
Snail Shell cave (Figure A), we developed a biofilm collection methodology that targeted biofilm from cave walls.
Ceuthophilus samples were generated from whole crickets to encourage the isolation of spore-forming Actinomycetota.
Three soil samples and three crickets were used in isolation workflows.

A wide variety of methods have been developed for the isolation of Actinomycetota from environmental samples. We
selected two methods to enrich for the isolation of actinomycetes. As described in Methods, we adapted a standard soil
dilution and plating methodology using humic acid vitamin (HV) agar with added antibiotics to suppress fungi and Gram-
negative microorganism growth (Hayakawa & Nonomura, 1987). Second, we adapted a methodology to enrich the
presence of motile spores (Hayakawa, Otoguro, Takeuchi, Yamazaki, & Iimura, 2000; Hop et al., 2011).

Colonies formed in HV agar primary plates, and fast-growing colonies were picked and subcultured in as little as one
week (Figure B), and slow-growing colonies were subcultured in as much as three weeks. Subculture plates of
International Streptomyces Protocol 1 (ISP1) medium agar, typtic soy broth (TSB) agar, and Bennett’s agar were streaked
to subculture picked colonies from primary plates onto secondary plates. Photographs of isolated Actinomycetota are
shown in Figure B. Single colonies were used to subculture onto tertiary plates of the best medium for growth, and these
were used to inoculate liquid cultures in ISP1 or Bennett’s medium. From 25 mL cultures, we prepared glycerol stocks
and used the majority for genomic sequencing.

Genomes of nine selected isolated strains sequenced by nanopore sequencing using Oxford Nanopore sequencing at
Plasmidsaurus Inc. We evaluated two methodologies for sequencing samples. Genomic DNA from four liquid cultures
was isolated using a classic protocol optimized for bulk isolation of genomic DNA from actinomycetes. Isolated DNA
was of high purity (1.96- 2.00 Apgo/Angg, 1.97 -2.07 Apgo/Ap3p) and submitted for sequencing. Alternatively, for six
liquid cultures, we submitted cell pellets for automated DNA isolation using a ZymoBIOMICS™ 96 MagBead DNA Kit
and nanopore sequencing. As shown in Table 1, we obtained high-quality assemblies for all samples. All genomes were of
sufficient quality to permit taxonomic estimation and evaluation of secondary metabolic potential.

Taxonomic estimation via whole gene taxonomic analysis using the Type (Strain) Genome Serve (TYGS), which
estimates taxonomic assignments and phylogenies for submitted strains in comparison to a continuously updated database
of type strains. Taxonomic distance is proportional in part to the Digital DNA-DNA Hybridization (sDDH) score shown,
with all strains below the cutoff for preliminary designation as novel species. Figure C shows an example of phylogenetic
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analysis of strain IBHARDO0O1, isolated from a cave cricket and analyzed by whole genome taxonomy using TYGS. This
shows the tree inferred with FastME 2.1.6.1 (Lefort et al., 2015) from GBDP distances calculated from genome
sequences. The branch lengths are scaled in terms of GBDP distance formula ds and indicate that this strain does not
cluster with any of the species that it is most similar to, suggesting it may be a member of a previously undescribed genus.
Future studies will be required to validate this preliminary assignment.

Secondary metabolic potential of genomically sequenced strains was performed using the antiSMASH program, which
uses GenBank-formatted data to analyze for the presence of secondary metabolic biosynthetic gene clusters (BGCs). Gene
clusters are classified into biosynthetic classes based on the predicted presence of diagnostic genes for each class. From
antiSMASH analysis of the nine genomes, we tabulated the number of BGCs in four major classes. As shown in Panel D,
isolates contain between 12 and 43 predicted BGCs, the number of which roughly scales with genome size. Number and
types of biosynthetic classes varied between strains.

This pilot study defines the potential for the discovery of new taxa with secondary metabolic potential from cave
ecosystems and trogloxenic insects. Future studies with a broader range of culture conditions and sample treatments can
expand the scope of microorganismal discovery. Preliminary species and genera can be validated by follow-up studies.
Promising strains containing biosynthetic gene clusters of interest can enter into a molecular discovery workflow to assess
and validate the potential of novel cave taxa for generating novel bioactive secondary metabolites as leads for
development in drug discovery programs.

Methods

Cave environmental sample collection

Sediment samples were collected from Snail Shell Cave, a hydrologically active cave located in Rockvale, Tennessee. The
samples were collected immediately after the twilight zone, in the dark zone, from cave walls that demonstrated evidence

of microbial colonization. A one cm? sterile abrasive pad (Scotch-Brite) was used to collect biofilm sediments by
scrubbing the wall in a circle with a ten cm diameter. Five sediment samples were collected and transported in sterile
Falcon tubes, transferred into sterile petri dishes, and dried at 30 °C for two weeks. Dry weights were 215 - 553 mg.
Sediment was removed from the pads aseptically by stretching and bending the pads. Cave-dwelling crickets were
collected from Hardin’s Cave, located in Nashville, Tennessee. The crickets were captured in sealable plastic bags and
crushed within ten minutes of capture. The crickets were then cut into fine pieces in a Petri dish, at 30 °C for one week to
induce sporulation and further cut with a sterile razor blade to produce a coarse powder.

Selective isolation method

Sediments and crickets were plated using two selective isolation methods. For both methods, the samples were first
resuspended in 100 mL beakers (60 x 46 mm diameter) in 50 mL phosphate buffer (50 mM, pH = 7.0) containing 10 %
soil extract, stirring with a glass rod for 30 seconds, followed by 90 minutes of rest at 30 °C. In the “motile spore
preparation” method (Hayakawa et al., 2000; Hop et al., 2011), 8 mL of the upper portion of the sample solution was
transferred into a 15 mL Falcon tube (16 x 105 mm). The tubes were centrifuged for 10 minutes at 1500 x g and allowed
to rest at 30 °C for 30 minutes to enable motile spores to circulate. From the middle of the volume, 3 mL was removed to a
sterile Eppendorf tube and ten-fold serially diluted twice. In the “standard dilution method,” the above 90-minute rested
solution was briefly stirred, allowed to settle for 30 seconds, and the suspension was diluted with sterile H,O, 1:100, 1:1K,
and 1:10K dilutions.

All samples were plated on Humic Acid Vitamin agar (Hayakawa & Nonomura, 1987), ISP1, and Bennett’s Agar
supplemented with a final concentration of nalidixic acid (20 mg/L), trimethoprim (10 mg/L), and cycloheximide (50
mg//L) to inhibit the growth of fungi and Gram-negative bacteria. The plates were incubated for 2 - 4 weeks at 30 °C, and
colonies of interest were picked and inoculated onto secondary purification plates by streaking onto ISP1 and Bennett’s
media Agar. Individual colonies were used to streak tertiary isolation plates. Loops of mycelia from tertiary plates were
used to inoculate ISP1 and Bennett’s liquid cultures (25 mL in a 250 mL Erlenmeyer flask). After 5-7 days of incubation
with orbital shaking (230 rpm). A 0.5 mL portion of the culture was combined with an equal volume of sterilized 20%
glycerol, 10% lactose, and stored at -80 °C. The remaining cultures were pelleted by centrifugation at 3348 x g for 20
minutes and stored at -80 °C.

Isolation of genomic DNA

Genomic DNA was isolated using a procedure adapted from standard protocols (Kieser, J., Buttner, Chater, & Hopwood,
2000). The frozen bacterial pellets were resuspended in 5 mL TE25S buffer. 100 pL of Lysozyme solution (100 mg mL™!
in nuclease-free H,O) and 200 pL/mL RNAse A (0.004 g in TE25S Buffer) were added. The sample was incubated for 60
minutes at 37 °C, with occasional inversions. Then 50 pL Proteinase K solution (0.02 g in 1 mL H»O) was added and then
mixed. 300 pL of SDS solution was added, and the sample was incubated for one hour at 55 °C in a water bath, with
occasional inversion. Then 1 mL of 5M NaCl and 650 pL. CTAB/NaCl were added and mixed in, and the sample was
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incubated for 10 minutes at 55°C. The samples were cooled to about 37 °C, and 5 mL chloroform/isoamyl alcohol (24:1)
was added and mixed via inversion for 30 minutes. The samples were centrifuged for 15 minutes at 3750 rpm, and the top
layer was transferred to a fresh Falcon tube, being careful not to pull the interface layer. Then 0.6 volume of isopropanol
was added and mixed by inversion. After about 3 minutes, the DNA was precipitated. Then the DNA was spooled with a
glass hook and rinsed in 70% Ethanol. The DNA was transferred to a clean Eppendorf tube and air-dried for about 2.5
minutes. The DNA was then dissolved in 250 pL. EB Buffer and heated to 55 °C for 30 minutes. The DNA was incubated
at four °C for 3 days to fully rehydrate and homogenized by pipetting up and down using a 200 pL. micropipette.

Nanopore sequencing

Genomic DNA was isolated from IBSNAIO01, IBSNAIO02, IBSNAIO04, and IBSNAIOO6 using a modified CTAB
protocol from 25 mL cultures, which were diluted to 50 ng/pL. Pellets of IBHARDO0O1, 003, 004, 005, and IBSNAI012
were generated from 25 mL liquid cultures. Bacterial Genome Sequencing for IBSNAIO01, IBSNAI002, IBSNAI004, and
IBSNAIO06 was performed on isolated DNA by Plasmidsaurus Inc. using Oxford Nanopore Technology with custom
analysis and annotation. Bacterial Genome Sequencing for IBHARDO001, 002, 003, 004, 005, and for IBHARDO12 was
performed from pellets (30 - 50 mg), genomic DNA isolated using ZymoBIOMICS™ 96 MagBead DNA Kit
(D4308/D4302) and sequenced as above.

Taxonomic estimation

The genome sequence data were uploaded to the Type (Strain) Genome Server (TYGS), a free bioinformatics platform
available under https://tygs.dsmz.de, for a whole genome-based taxonomic analysis (Meier-Kolthoff & Goker, 2019). The
analysis also made use of recently introduced methodological updates and features. Information on nomenclature,
synonymy, and associated taxonomic literature was provided by TYGS's sister database, the List of Prokaryotic names
with Standing in Nomenclature (LPSN, available at https://lpsn.dsmz.de) (Meier-Kolthoff, Carbasse, Peinado-Olarte, &
Goker, 2022). The results were provided by the TYGS on 2025-08-11.

Data availability

GenBank accession numbers are provided in Table 1.

Table 1. List of strains isolated and sequenced in this study and taxonomic inference.
. 1 |Total 2)55::;“:(1 ;}ze:ome Contigs Genes Closest clustering gDDH GenBank

Organism' | . 1) g o 85 | annotated species? ( :A) ) Accession

Nonomuraea
; 22.3

IBHARDOO1 | 248,811 |97 9.5 2 8,494 muscovyensis DSM PRINA1308599
45913 Planomonospora |22.2
corallina TBRC 4489
Streptomyces formicae

IBHARDO003 | 221,983 |75 8.3 2 7,251 DSM 100524 28.6 |PRINA1308605
Micromonospora

IBHARDO004 | 380,186 |99 6.8 1 6,546 kangleipakensis DSM  (66.8 |PRINA1308606
45612

TBHARDOOS | 266,653 | 102 6.3 1 5,866 Ifgg;’;g’a SOENBRC 1444 |PRINA1308607
Micromonospora

IBSNAIO12 |352,887 (102 6.6 1 6,126 palomenae DSM 68.5 |PRIJNA1308591
102131

IBSNAIOO1 (316,549|101 8.5 4 7,810 Streptomyces silvae For3|69.7 |PRINA1308129
Streptomyces caledonius

IBSNAIO02 |168,615 (92 9.9 8 9,065 MS1.HAVA 3 34.9 |PRIJNA1308159
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Streptomyces kutzneri

IBSNAIOO4 (69,803 |45 9.4 9 8,707 DSM 40907

46.7 |PRINA1308588

Streptomyces lannensis

IBSNAIOO6 |378,350(98 9.9 2 8,943 JCM16578

73.5 |PRJNA1308590

IIBHARD strains were isolated from Hardin’s cave Ceuthophilus and IBSNAI strains from Snail Shell cave biofilms.
2For the phylogenomic inference, all pairwise comparisons among the set of genomes were conducted using GBDP and
accurate intergenomic distances inferred under the algorithm 'trimming' and distance formula ds. 100 distance replicates
were calculated each. Digital DDH values and confidence intervals were calculated using the recommended settings of
the GGDC 4.0.
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