

# Cysteine rich intestinal protein 2 links copper homeostasis to translational regulation in primary myoblasts

Odette Verdejo-Torres<sup>1</sup>, Teresita Padilla-Benavides<sup>1§</sup>

<sup>1</sup>Molecular Biology and Biochemistry, Wesleyan University, Middletown, Connecticut, United States

# **Abstract**

Copper (Cu) is an essential trace element for cellular metabolism, yet its roles in development are not fully defined. We identified murine cysteine-rich intestinal protein 2 (mCrip2) as a novel Cu-binding protein required for myoblast differentiation. RNA-seq of *mCrip2*-deficient cells revealed downregulation of ribosome biogenesis and translation genes. Loss of *mCrip2* reduced global protein synthesis by 20-30%, partially mimicking cycloheximide treatment. Interestingly, Cu supplementation restored protein synthesis despite persistent differentiation defects. These findings establish mCrip2 as a Cu-responsive regulator linking metal homeostasis to protein synthesis, suggesting a previously unrecognized connection between Cu availability and translational control in mammalian cells.

<sup>§</sup>To whom correspondence should be addressed: tpadillabena@wesleyan.edu

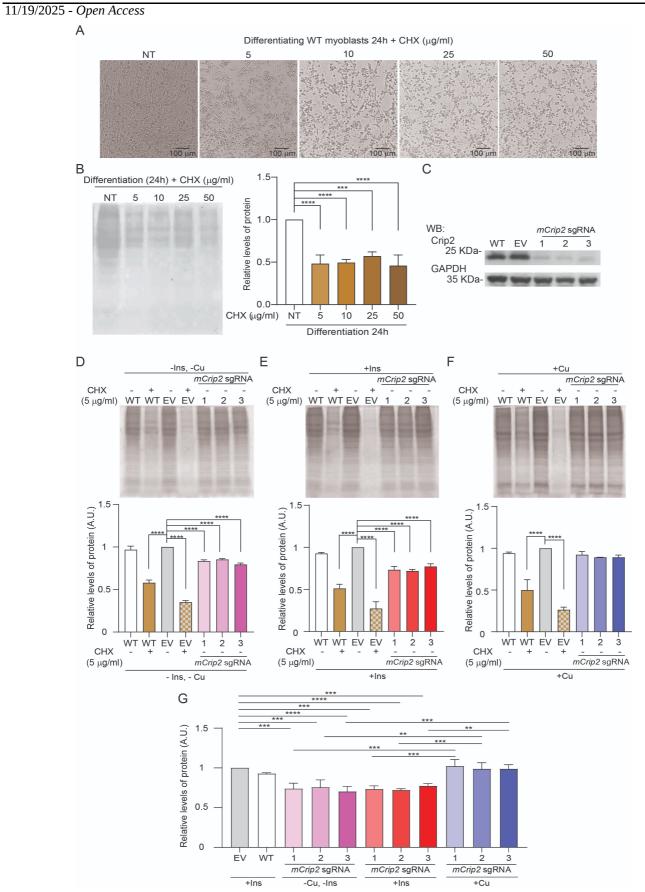



Figure 1. *mCrip2*-deficient differentiating myoblasts exhibit impaired protein synthesis, which is restored by Cu supplementation.:

**(A)** Representative light microscopy images of wild-type (WT) myoblasts differentiated in the presence of increasing concentrations of cycloheximide (CHX). **(B)** Representative Coomassie Brilliant Blue-stained gel (left) and quantification (right) of total protein extracts from WT myoblasts differentiated under increasing CHX concentrations. **(C)** 

Representative western blot of mCrip2 protein levels in WT differentiating myoblasts and in cells transduced with empty vector (EV) or three independent sgRNAs targeting mCrip2. (**D-F**) Representative Coomassie Brilliant Blue gels (top) and corresponding quantification (bottom) showing total protein content in differentiating myoblasts under (**D**) basal conditions (no insulin, no Cu), (**E**) insulin supplementation, and (**F**) Cu supplementation. In all cases for Coomasie Brilliant Blue gels, the lysates were normalized by both total cell number and extraction volume (not by protein concentration) to assess total protein content per cell under each condition. WT and EV controls were treated with CHX (5  $\mu$ g/ml), and comparisons were made between EV controls and mCrip2 KO myoblasts in each condition. (**G**) Additional statistical analyses confirmed that total protein content in Cu-treated mCrip2-deficient cells was significantly higher than in untreated mCrip2-deficient cells. Overall, the data shows that Cu treatment restored total protein levels to near control values. Data represents N = 3 independent experiments. \*\*P < 0.01, \*\*\*\*P < 0.001, \*\*\*\*\*P < 0.0001.

# **Description**

Copper (Cu) is a trace element essential for numerous biological processes mediated by Cu-dependent proteins (Festa & Thiele, 2011; Fraústo da Silva & Williams, 2001). Classic examples include cytochrome c oxidase (COX) for aerobic respiration, lysyl oxidases (LOXs) for collagen and elastin maturation, tyrosinase in melanin formation, as well as several Cu-binding proteins (CuBPs) in autophagy and transcriptional regulation (Carulli, 2025; Chen et al., 2021; Csiszar, 2001; Itoh et al., 2008; Leary et al., 2004; McCann, 2022; Morgada et al., 2015; Moriya et al., 2008; Ridge et al., 2008; Tavera-Montanez et al., 2019; Verdejo-Torres et al., 2024; Yuan et al., 2017)). Cu also contributes to catecholamine synthesis, peptide hormone modification, and redox balance through superoxide dismutases (SOD1/3) and ceruloplasmin (CP) (Fisher et al., 2018; Hatori et al., 2016; Orena et al., 1986; Ramos et al., 2016; Schmidt et al., 2018; Shiva et al., 2006; Vendelboe et al., 2016). Beyond these canonical roles, emerging evidence shows that Cu is required for tissue development, including muscle, intestine, and brain (Barnes et al., 2009; Barnes et al., 2005; Carulli, 2025; Hatori et al., 2016; Pierson et al., 2017; Schmidt et al., 2018; Tavera-Montanez et al., 2019; Verdejo-Torres et al., 2024; Vest et al., 2018; Whitlow et al., 2023). Maintaining appropriate Cu levels is critical, as deficiency impairs development while overload drives oxidative stress via Haber-Weiss and Fenton-like reactions, damaging [Fe-S] cluster proteins and DNA (Burton & Jauniaux, 2011; Gunther et al., 1995). To preserve homeostasis and support differentiation, cells depend on a network of transcriptional regulators, chaperones, cuproenzymes, and transporters (Carulli, 2025; Festa & Thiele, 2011; Finney & O'Halloran, 2003; Fitisemanu & Padilla-Benavides, 2024; Ge et al., 2022; Maung et al., 2021; Robinson & Winge, 2010).

Skeletal muscle provides a powerful model for dissecting Cu biology, due to its well-defined transcriptional program and the extensive knowledge of its transcription factors, chromatin remodelers, and lineage regulators (Berkes & Tapscott, 2005; Brack & Rando, 2012; Buckingham & Rigby, 2014; Chang & Rudnicki, 2014; Cho et al., 2015; Du et al., 2012; Faralli & Dilworth, 2012; Hernandez-Hernandez et al., 2013; Joung et al., 2018; Kablar et al., 1997; Montarras et al., 2013; Nasipak et al., 2015; Ohkawa et al., 2007; Padilla-Benavides et al., 2020; Padilla-Benavides et al., 2015; Padilla-Benavides et al., 2017; Padilla-Benavides, 2022, 2023; Pallafacchina et al., 2010; Rudnicki & Jaenisch, 1995; Sambasivan & Tajbakhsh, 2015; Seale et al., 2000; Venuti et al., 1995; von Maltzahn et al., 2013; Witwicka et al., 2019; Yablonka-Reuveni et al., 1999; Yin et al., 2013). With its high metabolic demand, intrinsic requirement for Cu, and remarkable regenerative capacity, skeletal muscle is uniquely suited to uncover novel Cu-dependent mechanisms. Our group has established Cu as a key regulator of skeletal muscle differentiation and function (Carulli, 2025; McCann, 2022; Tavera-Montanez et al., 2019; Verdejo-Torres et al., 2024; Vest et al., 2018). During adult myogenesis, satellite cells progress from quiescence to proliferation, undergoing a metabolic shift from fatty acid oxidation to glycolysis and ultimately to oxidative phosphorylation, a transition that requires Cu for mitochondrial biogenesis and function (Montarras et al., 2013; Remels et al., 2010; Ryall et al., 2015). Indeed, disruption of Cu-dependent mitochondrial protein synthesis impairs both myogenesis and muscle regeneration (Hamai et al., 1997; Moyes, 2003; Moyes et al., 1998; Moyes et al., 1997; Wagatsuma & Sakuma, 2013). Beyond its metabolic role, we have shown that Cu also contributes to transcriptional and post-transcriptional regulatory processes that support myogenesis (McCann et al., 2022; McCann, 2022; Tavera-Montanez et al., 2019; Verdejo-Torres et al., 2024; Vest et al., 2018; Whitlow et al., 2023). Furthermore, our transcriptomic analyses revealed that Cu availability directly influences cellular protein synthesis capacity through specific Cu-BPs (Verdejo-Torres et al., 2024).

Through metalloproteomics analyses, we identified murine cysteine-rich intestinal protein 2 (mCrip2) as a novel Cu-BP expressed in primary myoblasts (Verdejo-Torres et al., 2024). mCrip2, a conserved member of the CRIP family, has been linked to autophagy (Chen et al., 2021), Wnt-regulated neural crest migration (Wei et al., 2011), and glycolysis regulation in cancer (Zhou et al., 2018). Biochemical assays showed high-affinity Cu binding (Chen et al., 2021; Verdejo-Torres et al., 2024), while CRISPR/Cas9-mediated deletion of *mCrip2* impaired myoblast differentiation (Verdejo-Torres et al., 2024). Confocal and CUT&RUN analyses further revealed that mCrip2 localizes to both cytosol and nucleus of proliferating and differentiating myoblasts and binds to a defined set of promoters in a Cu-dependent manner (Verdejo-Torres et al., 2024).



Remarkably, RNA-seq analyses of *mCrip2*-deficient myoblasts revealed robust downregulation of genes involved in mRNA processing, ribosome biogenesis, translation, and transcriptional/chromatin regulation (Verdejo-Torres et al., 2024). Among these categories, ribosomal genes such as *RpsA* and *Rps8*, critical for 40S assembly and rRNA processing, were consistently reduced in knockout cells, suggesting that Cu-BPs like mCrip2 integrate metal homeostasis to the translational machinery. To test this hypothesis, we examined global protein synthesis in *mCrip2*-deficient cells in comparison to control wild-type (WT) and myoblasts transduced with an empty vector treated with cycloheximide (CHX), a classical translation inhibitor (Hayashi et al., 2022; Li et al., 2020). Our previous work showed that Crip2-deficient myoblasts fail to differentiate, yet supplementation with non-toxic CuSO<sub>4</sub> increased cell retention on culture plates (Verdejo-Torres et al., 2024), indicating a survival advantage despite impaired differentiation. Guided by the RNA-seq data, we next quantified protein synthesis using SDS-PAGE and Coomassie Brilliant Blue staining.

First, we titrated CHX concentrations in differentiating WT myoblasts to identify a working dose that inhibited protein synthesis by ~50% without causing widespread cell detachment (Fig. 1A,B). A concentration of 5 µg/ml was selected for subsequent comparisons as higher concentrations led to extensive cell detachment without further loss of protein content. CHX consistently reduced protein synthesis regardless of insulin or Cu supplementation, although detachment was more pronounced under basal differentiation (-Ins/-Cu) conditions. Guided by RNA-seq data showing that mCrip2 loss downregulates genes involved in translation, we next examined the impact of mCrip2 deletion on protein synthesis using SDS-PAGE followed by Coomassie Brilliant Blue staining. We utilized three independent primary mCrip2 knockout myoblast lines previously reported (Fig. 1C). To directly compare global protein synthesis under different conditions, lysates were normalized by both total cell number and extraction volume rather than by protein concentration. This approach allowed us to quantify total protein content per cell, thereby capturing differences in overall protein accumulation rather than masking them through post-extraction normalization. Equal numbers of viable myoblasts were counted and lysed at a constant buffer-to-cell ratio, ensuring that variations in Coomassie-stained total protein reflect genuine changes in protein synthesis capacity rather than differences in cell survival or extraction efficiency. Gel imaging and densitometric analyses showed that under basal differentiation conditions (Fig. 1D) or with insulin supplementation (Fig. 1E), mCrip2 loss reduced total protein content by 20-30% relative to WT or EV controls. Strikingly, Cu supplementation fully restored protein levels in knockout cells to those of WT and EV (Fig. 1F). Statistical analysis comparing mCrip2-deficient myoblasts with and without Cu supplementation demonstrated a significant increase in total protein levels upon Cu treatment, indicating that this transition metal restores the protein synthesis capacity compromised by *mCrip2* depletion (**Fig. 1G**).

Together, these findings establish that loss of *mCrip2* causes a partial translational deficit, and that Cu supplementation can rescue this defect. While the contribution of Cu-BPs to transcriptional and translational control in mammalian cells remains largely unexplored, our data identify mCrip2 as a Cu-responsive regulator that integrates metal homeostasis with protein synthesis, an essential biosynthetic process for skeletal muscle differentiation. This work expands the paradigm of Cu biology, extending its known roles in mitochondrial function and redox balance to include direct regulation of the translational machinery.

## **Methods**

# Cell culture

Murine primary myoblasts were purchased from iXCells Biotechnologies (10MU-033) and cultured in growth medium containing 1:1 *v/v* DMEM:F-12 (Life Technologies), 20% fetal bovine serum (FBS, Life Technologies), 25 ng/ml of basic fibroblast growth factor (FGF; Sigma Aldrich), 5% chicken embryo extract (C3999; United States Biological Corporation) and 1% antibiotics (penicillin G/streptomycin, Gibco) in a humidified atmosphere containing 5% CO<sub>2</sub> at 37°C.

Primary myoblasts were seeded at  $6x10^4$  cells/cm<sup>2</sup> for all differentiating conditions. Specific culture conditions established for differentiating myoblasts are indicated in the figure legend. Differentiation was induced by shifting the cells into differentiation media consisting of DMEM (Life Technologies), 2% horse serum (Life Technologies), 1% antibiotics, supplemented or not with a mixture of Insulin/Transferrin/Selenium (Gibco) and 30  $\mu$ M CuSO<sub>4</sub> as described (Tavera-Montanez et al., 2019; Verdejo-Torres et al., 2024; Vest et al., 2018). Myoblasts were cultured on plates treated with 0.01% Matrigel (Corning, Inc.)

To produce lentiviral particles, HEK293T cells were purchased from ATCC (Manassas, VA). HEK293T cells were maintained in growth media containing DMEM supplemented with 10% FBS and 1% antibiotics in a humidified incubator at 37°C with 5% CO<sub>2</sub>.

# Plasmids construction, virus production, and transduction of primary myoblasts

We generated *mCrip2* knockout (KO) primary myoblasts using CRISPR/Cas9 technology (Verdejo-Torres et al., 2024). Guide RNAs (gRNAs) of 20 nucleotides were designed to target sequences upstream of a 5′-NGG protospacer-adjacent motif (PAM) within the intron of interest, and their specificity was confirmed by whole-genome searches to minimize off-target effects (Verdejo-Torres et al., 2024). CRISPR/Cas9 lentiviral constructs were prepared following the



lentiCRISPRv2 oligo cloning protocol (Sanjana et al., 2014). Briefly, complementary sense and antisense oligos (Integrated DNA Technology, IDT) were annealed, phosphorylated, and cloned into the BsmBI sites downstream of the human U6 promoter in the lentiCRISPRv2 plasmid (a gift from Dr. F. Zhang; Addgene plasmid #52961; (Sanjana et al., 2014; Shalem et al., 2014)). An empty vector (EV) encoding Cas9 but lacking sgRNA was used as a null KO control.

To generate lentiviral particles,  $5 \times 10^6$  HEK293T cells were seeded in 10 cm dishes. The following day, cells were transfected with 15 µg of the *mCrip2* sgRNA-containing CRISPR/Cas9 vector together with packaging plasmids pLP1 (15 µg), pLP2 (6 µg), and pSVGV (3 µg), using Lipofectamine 2000 (Invitrogen) according to the manufacturer's instructions. After 24 h, the medium was replaced with 10 ml DMEM supplemented with 10% FBS. Viral supernatants were collected at 24 and 48 h, filtered through a 0.22 µm syringe filter (Millipore), and used for myoblast transduction. Primary myoblasts (2 ×  $10^6$ ) were infected with 5 ml of filtered viral supernatant supplemented with 8 µg/ml polybrene (Sigma Aldrich), as described (Tavera-Montanez et al., 2019; Verdejo-Torres et al., 2024). After overnight incubation, cells were selected in growth medium containing 2 µg/ml puromycin (Invitrogen), and stable lines were maintained in 1 µg/ml puromycin.

#### Antibodies and western blot

Primary rabbit anti-Crip2 (A9038) and anti-GAPDH (A19056) antibodies were purchased from ABclonal. Differentiating primary myoblasts were lysed in RIPA buffer [10 mM PIPES pH 7.4, 150 mM NaCl, 2 mM EDTA, 1% Triton X-100, 0.5% sodium deoxycholate, 10% glycerol] supplemented with protease inhibitors (Thermo Fisher Scientific). Lysates were sonicated for 6 min (30 s on/off cycles, mild intensity) using a Bioruptor UCD-200 (Diagenode, NJ), and protein concentrations were determined by the Bradford assay (Bradford, 1976). Equal amounts of protein (20 µg) were resolved on 10% SDS-PAGE gels and transferred to PVDF membranes. Membranes were incubated overnight at 4°C with primary antibodies (1:1000), followed by species-specific secondary antibodies for 2 h at room temperature. Detection was performed using HRP substrate for enhanced chemiluminescence (ECL; Tanon, Abclonal Technologies). Band intensities were quantified by densitometry using ImageJ v1.8 (NIH; (Schindelin et al., 2012)).

# Inhibition of protein translation by cycloheximide

Primary myoblasts were seeded at  $6x10^4$  cells/cm<sup>2</sup>, allowed to reach confluency and differentiated in the presence of absence of insulin and Cu, as indicated in the figure legends, and incubated for 24 h with increasing concentrations of cycloheximide (CHX; 5-50 µg/mL). At harvest, total viable cell numbers were determined using a Cellometer. Cell pellets were then resuspended in lysis buffer at a constant ratio of buffer volume to cell number (typically  $100 \mu$ L per  $1x10^6$  cells) to ensure equivalent extraction efficiency across samples. Samples were sonicated at medium intensity for 5 min with 30 s on-off cycles in a Bioruptor. Equal volumes of lysate ( $10 \mu$ l), corresponding to the same number of cells, were loaded directly onto 10% SDS-PAGE gels for Coomassie staining. This approach allowed us to compare total protein content per cell across conditions, independent of differences in viability or proliferation. Densitometric analyses of total protein per lane were performed with ImageJ software v.1.8 (NIH; (Schindelin et al., 2012)).

## Statistical analysis

In all cases, the data represents the mean of three independent biological replicates  $\pm$  SE. Statistical analyses were performed using Graph Pad Prism 7.0b (Dotmatrics, Boston, MA). Multiple data point comparisons and statistical significance were determined using one-way analysis of variance (ANOVA) followed by Bonferroni multiple comparison tests. Experiments where p< 0.05 were considered statistically significant.

# **DATA AVAILABILITY**

Genomic data sets have been deposited and published in the Gene Expression Omnibus (GEO) (accession no. GSE252162; (Verdejo-Torres et al., 2024)).

# DISCLOSURE AND COMPETING INTERESTS STATEMENT

The authors declare no competing interests.

**Acknowledgements:** This work was supported by NIH grant NIAMS-R01AR077578 (to T.P.-B.). The authors thank Dr. Monserrat Olea-Flores and Mr. Denzel Bonilla-Pinto for their valuable and insightful comments on this work. Genomic data sets have been deposited and published in the Gene Expression Omnibus (GEO) (accession no. GSE252162; (Verdejo-Torres et al., 2024)).

# References

Argüello JM, Raimunda D, Padilla-Benavides T. 2013. Mechanisms of copper homeostasis in bacteria. Frontiers in Cellular and Infection Microbiology 3: 10.3389/fcimb.2013.00073. DOI: 10.3389/fcimb.2013.00073

Barnes N, Bartee MY, Braiterman L, Gupta A, Ustiyan V, Zuzel V, et al., Lutsenko. 2009. Cell-Specific Trafficking Suggests a new role for Renal ATP7B in the Intracellular Copper Storage. Traffic 10: 767-779. DOI: 10.1111/j.1600-



#### 0854.2009.00901.x

Barnes N, Tsivkovskii R, Tsivkovskaia N, Lutsenko S. 2005. The Copper-transporting ATPases, Menkes and Wilson Disease Proteins, Have Distinct Roles in Adult and Developing Cerebellum. Journal of Biological Chemistry 280: 9640-9645. DOI: 10.1074/jbc.M413840200

Berkes CA, Tapscott SJ. 2005. MyoD and the transcriptional control of myogenesis. Seminars in Cell & Developmental Biology 16: 585-595. DOI: <u>10.1016/j.semcdb.2005.07.006</u>

Brack AS, Rando TA. 2012. Tissue-Specific Stem Cells: Lessons from the Skeletal Muscle Satellite Cell. Cell Stem Cell 10: 504-514. DOI: 10.1016/j.stem.2012.04.001

Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72: 248-254. DOI: <u>10.1016/0003-2697(76)90527-3</u>

Buckingham M, Rigby PWJ. 2014. Gene Regulatory Networks and Transcriptional Mechanisms that Control Myogenesis. Developmental Cell 28: 225-238. DOI: 10.1016/j.devcel.2013.12.020

Burton GJ, Jauniaux E. 2011. Oxidative stress. Best Practice & Research Clinical Obstetrics & Gynaecology 25: 287-299. DOI: <u>10.1016/j.bpobgyn.2010.10.016</u>

Carulli N, Johnston EE, Klein DC, Verdejo-Torres O, Parikh A, Rivera A, et al., Padilla-Benavides. 2025. The PBAF chromatin remodeling complex contributes to metal homeostasis through Mtf1 regulation.: 10.1101/2025.04.12.648552. DOI: 10.1101/2025.04.12.648552

Chang NC, Rudnicki MA. 2014. Satellite Cells. Current Topics in Developmental Biology, Stem Cells in Development and Disease: 161-181. DOI: 10.1016/B978-0-12-416022-4.00006-8

Chen L, Li N, Zhang M, Sun M, Bian J, Yang B, et al., Wang. 2021. APEX2-based Proximity Labeling of Atox1 Identifies CRIP2 as a Nuclear Copper-binding Protein that Regulates Autophagy Activation. Angewandte Chemie International Edition 60: 25346-25355. DOI: <a href="https://doi.org/10.1002/anie.202108961">10.1002/anie.202108961</a>

Cho OH, Mallappa C, Hernández-Hernández JM, Rivera-Pérez JA, Imbalzano AN. 2014. Contrasting roles for MyoD in organizing myogenic promoter structures during embryonic skeletal muscle development. Developmental Dynamics 244: 43-55. DOI: 10.1002/dvdy.24217

Csiszar K. 2001. Lysyl oxidases: A novel multifunctional amine oxidase family. Progress in Nucleic Acid Research and Molecular Biology: 1-32. DOI: <u>10.1016/s0079-6603(01)70012-8</u>

Du C, Jin YQ, Qi JJ, Ji ZX, Li SY, An GS, Jia HT, Ni JH. 2012. Effects of Myogenin on Expression of Late Muscle Genes through MyoD-Dependent Chromatin Remodeling Ability of Myogenin. Molecules and Cells 34: 133-142. DOI: 10.1007/s10059-012-2286-1

Faralli H, Dilworth FJ. 2012. Turning on Myogenin in Muscle: A Paradigm for Understanding Mechanisms of Tissue-Specific Gene Expression. Comparative and Functional Genomics 2012: 1-10. DOI: <a href="https://doi.org/10.1155/2012/836374">10.1155/2012/836374</a>

Festa RA, Thiele DJ. 2011. Copper: an essential metal in biology. Curr Biol 21(21): R877-83. PubMed ID: 22075424

Finney LA, O'Halloran TV. 2003. Transition Metal Speciation in the Cell: Insights from the Chemistry of Metal Ion Receptors. Science 300: 931-936. DOI: <u>10.1126/science.1085049</u>

Fisher OS, Kenney GE, Ross MO, Ro SY, Lemma BE, Batelu S, et al., Rosenzweig. 2018. Characterization of a long overlooked copper protein from methane- and ammonia-oxidizing bacteria. Nature Communications 9: 10.1038/s41467-018-06681-5. DOI: 10.1038/s41467-018-06681-5

Fitisemanu FaM, Padilla-Benavides T. 2024. Emerging perspectives of copper-mediated transcriptional regulation in mammalian cell development. Metallomics 16: 10.1093/mtomcs/mfae046. DOI: 10.1093/mtomcs/mfae046

Fraústo da Silva, J. J. R., & Williams, R. J. P. (2001). The biological chemistry of the elements: the inorganic chemistry of life (2nd ed.). Oxford University Press. https://doi.org/10.1002/ANGE.19931050244

Ge EJ, Bush AI, Casini A, Cobine PA, Cross JR, DeNicola GM, et al., Chang. 2021. Connecting copper and cancer: from transition metal signalling to metalloplasia. Nature Reviews Cancer 22: 102-113. DOI: <u>10.1038/s41568-021-00417-2</u>

Gunther MR, Hanna PM, Mason RP, Cohen MS. 1995. Hydroxyl Radical Formation from Cuprous Ion and Hydrogen Peroxide: A Spin-Trapping Study. Archives of Biochemistry and Biophysics 316: 515-522. DOI: <u>10.1006/abbi.1995.1068</u>

Hamai N, Nakamura M, Asano A. 1997. Inhibition of Mitochondrial Protein Synthesis Impaired C2C12 Myoblast Differentiation.. Cell Structure and Function 22: 421-431. DOI: <u>10.1247/csf.22.421</u>

Hatori Y, Yan Y, Schmidt K, Furukawa E, Hasan NM, Yang N, et al., Lutsenko. 2016. Neuronal differentiation is associated with a redox-regulated increase of copper flow to the secretory pathway. Nature Communications 7: 10.1038/ncomms10640. DOI: 10.1038/ncomms10640



Hayashi S, Sakata S, Kawamura S, Tokutake Y, Yonekura S. 2022. XBP1u Is Involved in C2C12 Myoblast Differentiation via Accelerated Proteasomal Degradation of Id3. Frontiers in Physiology 13: 10.3389/fphys.2022.796190. DOI: 10.3389/fphys.2022.796190

Hernandez-Hernandez JM, Mallappa C, Nasipak BT, Oesterreich S, Imbalzano AN. 2013. The Scaffold attachment factor b1 (Safb1) regulates myogenic differentiation by facilitating the transition of myogenic gene chromatin from a repressed to an activated state. Nucleic Acids Research 41: 5704-5716. DOI: <a href="https://doi.org/10.1093/nar/gkt285">10.1093/nar/gkt285</a>

Itoh S, Kim HW, Nakagawa O, Ozumi K, Lessner SM, Aoki H, et al., Fukai. 2008. Novel Role of Antioxidant-1 (Atox1) as a Copper-dependent Transcription Factor Involved in Cell Proliferation. Journal of Biological Chemistry 283: 9157-9167. DOI: 10.1074/jbc.M709463200

Joung H, Kwon S, Kim KH, Lee YG, Shin S, Kwon DH, et al., Kook. 2018. Sumoylation of histone deacetylase 1 regulates MyoD signaling during myogenesis. Experimental & Molecular Medicine 50: e427-e427. DOI: doi.org/10.1038/emm.2017.236

Kablar B, Krastel K, Ying C, Asakura A, Tapscott SJ, Rudnicki MA. 1997. MyoD and Myf-5 differentially regulate the development of limb versus trunk skeletal muscle. Development 124: 4729-4738. DOI: 10.1242/dev.124.23.4729

Leary SC. 2004. Human SCO1 and SCO2 have independent, cooperative functions in copper delivery to cytochrome c oxidase. Human Molecular Genetics 13: 1839-1848. DOI: <a href="https://doi.org/10.1093/hmg/ddh197">10.1093/hmg/ddh197</a>

Li Y, Yuan J, Chen F, Zhang S, Zhao Y, Chen X, et al., Wang. 2020. Long noncoding RNA SAM promotes myoblast proliferation through stabilizing Sugt1 and facilitating kinetochore assembly. Nature Communications 11: 10.1038/s41467-020-16553-6. DOI: 10.1038/s41467-020-16553-6

Maung MT, Carlson A, Olea-Flores M, Elkhadragy L, Schachtschneider KM, Navarro-Tito N, Padilla-Benavides T. 2021. The molecular and cellular basis of copper dysregulation and its relationship with human pathologies. The FASEB Journal 35: 10.1096/fj.202100273rr. DOI: <a href="https://doi.org/10.1096/fj.202100273RR">10.1096/fj.202100273RR</a>

McCann CJ, Hasan NM, Padilla-Benavides T, Roy S, Lutsenko S. 2022. Heterogeneous nuclear ribonucleoprotein hnRNPA2/B1 regulates the abundance of the copper-transporter ATP7A in an isoform-dependent manner. Frontiers in Molecular Biosciences 9: 10.3389/fmolb.2022.1067490. DOI: 10.3389/fmolb.2022.1067490

McCann C, Quinteros M, Adelugba I, Morgada MN, Castelblanco AR, Davis EJ, et al., Padilla-Benavides. 2022. The mitochondrial Cu+ transporter PiC2 (SLC25A3) is a target of MTF1 and contributes to the development of skeletal muscle in vitro. Frontiers in Molecular Biosciences 9: 10.3389/fmolb.2022.1037941. DOI: 10.3389/fmolb.2022.1037941

Montarras D, L'honoré A, Buckingham M. 2013. Lying low but ready for action: the quiescent muscle satellite cell. The FEBS Journal 280: 4036-4050. DOI: <a href="https://doi.org/10.1111/febs.12372">doi.org/10.1111/febs.12372</a>

Morgada MN, Abriata LA, Cefaro C, Gajda K, Banci L, Vila AJ. 2015. Loop recognition and copper-mediated disulfide reduction underpin metal site assembly of Cu  $_{\rm A}$  in human cytochrome oxidase. Proceedings of the National Academy of Sciences 112: 11771-11776. DOI: <a href="https://doi.org/10.1073/pnas.1505056112">doi.org/10.1073/pnas.1505056112</a>

Moriya M, Ho YH, Grana A, Nguyen L, Alvarez A, Jamil R, et al., Linder. 2008. Copper is taken up efficiently from albumin and  $\alpha_2$ -macroglobulin by cultured human cells by more than one mechanism. American Journal of Physiology-Cell Physiology 295: C708-C721. DOI:  $\underline{10.1152/ajpcell.00029.2008}$ 

Moyes CD. 2003. Controlling muscle mitochondrial content. Journal of Experimental Biology 206: 4385-4391. DOI: 10.1242/jeb.00699

Moyes, C. D., Battersby, B. J., & Leary, S. C. (1998). Regulation of muscle mitochondrial design [Review]. J Exp Biol, 201(Pt 3), 299-307. http://www.ncbi.nlm.nih.gov/pubmed/9503641 PubMed ID: <u>9503641</u>

Moyes CD, Mathieu-Costello OA, Tsuchiya N, Filburn C, Hansford RG. 1997. Mitochondrial biogenesis during cellular differentiation. American Journal of Physiology-Cell Physiology 272: C1345-C1351. DOI: 10.1152/ajpcell.1997.272.4.C1345

Nasipak BT, Padilla-Benavides T, Green KM, Leszyk JD, Mao W, Konda S, et al., Imbalzano. 2015. Opposing calcium-dependent signalling pathways control skeletal muscle differentiation by regulating a chromatin remodelling enzyme. Nature Communications 6: 10.1038/ncomms8441. DOI: 10.1038/ncomms8441

Ohkawa Y, Yoshimura S, Higashi C, Marfella CGA, Dacwag CS, Tachibana T, Imbalzano AN. 2007. Myogenin and the SWI/SNF ATPase Brg1 Maintain Myogenic Gene Expression at Different Stages of Skeletal Myogenesis. Journal of Biological Chemistry 282: 6564-6570. DOI: 10.1074/jbc.M608898200

Orena SJ, Goode CA, Linder MC. 1986. Binding and uptake of copper from ceruloplasmin. Biochemical and Biophysical Research Communications 139: 822-829. DOI: <u>10.1016/s0006-291x(86)80064-x</u>



Padilla-Benavides T, Haokip DT, Yoon Y, Reyes-Gutierrez P, Rivera-Pérez JA, Imbalzano AN. 2020. CK2-Dependent Phosphorylation of the Brg1 Chromatin Remodeling Enzyme Occurs during Mitosis. International Journal of Molecular Sciences 21: 923. DOI: 10.3390/ijms21030923

Padilla-Benavides T, Nasipak BT, Imbalzano AN. 2015. Brg1 Controls the Expression of *Pax7* to Promote Viability and Proliferation of Mouse Primary Myoblasts. Journal of Cellular Physiology 230: 2990-2997. DOI: 10.1002/jcp.25031

Padilla-Benavides T, Nasipak BT, Paskavitz AL, Haokip DT, Schnabl JM, Nickerson JA, Imbalzano AN. 2017. Casein kinase 2-mediated phosphorylation of Brahma-related gene 1 controls myoblast proliferation and contributes to SWI/SNF complex composition. Journal of Biological Chemistry 292: 18592-18607. DOI: 10.1074/jbc.M117.799676

Padilla-Benavides T, Olea-Flores M, Nshanji Y, Maung MT, Syed SA, Imbalzano AN. 2022. Differential requirements for different subfamilies of the mammalian SWI/SNF chromatin remodeling enzymes in myoblast cell cycle progression and expression of the Pax7 regulator. Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms 1865: 194801. DOI: 10.1016/j.bbagrm.2022.194801

Padilla-Benavides T, Olea-Flores M, Sharma T, Syed SA, Witwicka H, Zuñiga-Eulogio MD, et al., Imbalzano. 2023. Differential Contributions of mSWI/SNF Chromatin Remodeler Sub-Families to Myoblast Differentiation. International Journal of Molecular Sciences 24: 11256. DOI: 10.3390/ijms241411256

Pallafacchina G, François Sp, Regnault Ba, Czarny B, Dive V, Cumano A, Montarras D, Buckingham M. 2010. An adult tissue-specific stem cell in its niche: A gene profiling analysis of in vivo quiescent and activated muscle satellite cells. Stem Cell Research 4: 77-91. DOI: 10.1016/j.scr.2009.10.003

Pierson H, Muchenditsi A, Kim BE, Ralle M, Zachos N, Huster D, Lutsenko S. 2018. The Function of ATPase Copper Transporter ATP7B in Intestine. Gastroenterology 154: 168-180.e5. DOI: <u>10.1053/j.gastro.2017.09.019</u>

Ramos D, Mar D, Ishida M, Vargas R, Gaite M, Montgomery A, Linder MC. 2016. Mechanism of Copper Uptake from Blood Plasma Ceruloplasmin by Mammalian Cells. PLOS ONE 11: e0149516. DOI: <a href="https://doi.org/10.1371/journal.pone.0149516">10.1371/journal.pone.0149516</a>

Remels AHV, Langen RCJ, Schrauwen P, Schaart G, Schols AMWJ, Gosker HR. 2010. Regulation of mitochondrial biogenesis during myogenesis. Molecular and Cellular Endocrinology 315: 113-120. DOI: 10.1016/j.mce.2009.09.029

Ridge PG, Zhang Y, Gladyshev VN. 2008. Comparative Genomic Analyses of Copper Transporters and Cuproproteomes Reveal Evolutionary Dynamics of Copper Utilization and Its Link to Oxygen. PLoS ONE 3: e1378. DOI: 10.1371/journal.pone.0001378

Robinson NJ, Winge DR. 2010. Copper Metallochaperones. Annual Review of Biochemistry 79: 537-562. DOI: 10.1146/annurev-biochem-030409-143539

Rudnicki MA, Jaenisch R. 1995. The MyoD family of transcription factors and skeletal myogenesis. BioEssays 17: 203-209. DOI: <a href="https://doi.org/10.1002/bies.950170306">doi.org/10.1002/bies.950170306</a>

Ryall JG, Dell'Orso S, Derfoul A, Juan A, Zare H, Feng X, et al., Sartorelli. 2015. The NAD+-Dependent SIRT1 Deacetylase Translates a Metabolic Switch into Regulatory Epigenetics in Skeletal Muscle Stem Cells. Cell Stem Cell 16: 171-183. DOI: 10.1016/j.stem.2014.12.004

Sambasivan R, Tajbakhsh S. 2014. Adult Skeletal Muscle Stem Cells. Results and Problems in Cell Differentiation, Vertebrate Myogenesis: 191-213. DOI: 10.1007/978-3-662-44608-9 9

Sanjana NE, Shalem O, Zhang F. 2014. Improved vectors and genome-wide libraries for CRISPR screening. Nature Methods 11: 783-784. DOI: <a href="https://doi.org/10.1038/nmeth.3047">10.1038/nmeth.3047</a>

Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al., Cardona. 2012. Fiji: an open-source platform for biological-image analysis. Nature Methods 9: 676-682. DOI: <u>10.1038/nmeth.2019</u>

Schmidt K, Ralle M, Schaffer T, Jayakanthan S, Bari B, Muchenditsi A, Lutsenko S. 2018. ATP7A and ATP7B copper transporters have distinct functions in the regulation of neuronal dopamine- $\beta$ -hydroxylase. Journal of Biological Chemistry 293: 20085-20098. DOI:  $\underline{10.1074/jbc.RA118.004889}$ 

Seale P, Sabourin LA, Girgis-Gabardo A, Mansouri A, Gruss P, Rudnicki MA. 2000. Pax7 Is Required for the Specification of Myogenic Satellite Cells. Cell 102: 777-786. DOI: <u>10.1016/s0092-8674(00)00066-0</u>

Shalem O, Sanjana NE, Hartenian E, Shi X, Scott DA, Mikkelsen TS, et al., Zhang. 2014. Genome-Scale CRISPR-Cas9 Knockout Screening in Human Cells. Science 343: 84-87. DOI: <u>10.1126/science.1247005</u>

Shiva S, Wang X, Ringwood LA, Xu X, Yuditskaya S, Annavajjhala V, et al., Gladwin. 2006. Ceruloplasmin is a NO oxidase and nitrite synthase that determines endocrine NO homeostasis. Nature Chemical Biology 2: 486-493. DOI: 10.1038/nchembio813



Tavera-Montañez C, Hainer SJ, Cangussu D, Gordon SJV, Xiao Y, Reyes-Gutierrez P, et al., Padilla-Benavides. 2019. The classic metal-sensing transcription factor MTF1 promotes myogenesis in response to copper. The FASEB Journal 33: 14556-14574. DOI: 10.1096/fj.201901606R

Vendelboe TV, Harris P, Zhao Y, Walter TS, Harlos K, El Omari K, Christensen HEM. 2016. The crystal structure of human dopamine  $\beta$ -hydroxylase at 2.9 Å resolution. Science Advances 2: 10.1126/sciadv.1500980. DOI: 10.1126/sciadv.1500980

Venuti JM, Morris JH, Vivian JL, Olson EN, Klein WH. 1995. Myogenin is required for late but not early aspects of myogenesis during mouse development.. The Journal of cell biology 128: 563-576. DOI: <u>10.1083/jcb.128.4.563</u>

Verdejo-Torres O, Klein DC, Novoa-Aponte L, Carrazco-Carrillo J, Bonilla-Pinto D, Rivera A, et al., Padilla-Benavides. 2024. Cysteine Rich Intestinal Protein 2 is a copper-responsive regulator of skeletal muscle differentiation and metal homeostasis. PLOS Genetics 20: e1011495. DOI: 10.1371/journal.pgen.1011495

Vest KE, Paskavitz AL, Lee JB, Padilla-Benavides T. 2018. Dynamic changes in copper homeostasis and post-transcriptional regulation of *Atp7a* during myogenic differentiation. Metallomics 10: 309-322. DOI: 10.1039/c7mt00324b

von Maltzahn J, Jones AE, Parks RJ, Rudnicki MA. 2013. Pax7 is critical for the normal function of satellite cells in adult skeletal muscle. Proceedings of the National Academy of Sciences 110: 16474-16479. DOI: 10.1073/pnas.1307680110

Wagatsuma A, Sakuma K. 2013. Mitochondria as a Potential Regulator of Myogenesis. The Scientific World Journal 2013: 10.1155/2013/593267. DOI: 10.1155/2013/593267

Wei TC, Lin HY, Lu CC, Chen CM, You LR. 2011. Expression of Crip2, a LIM-domain-only protein, in the mouse cardiovascular system under physiological and pathological conditions. Gene Expression Patterns 11: 384-394. DOI: 10.1016/j.gep.2011.05.001

Whitlow TJ, Zhang Y, Ferguson N, Perez AM, Patel H, Link-Kemp JA, et al., Vest. 2023. Regulation of *Atp7a* RNA contributes to differentiation-dependent Cu redistribution in skeletal muscle cells. Metallomics 15: 10.1093/mtomcs/mfad042. DOI: 10.1093/mtomcs/mfad042

Witwicka H, Nogami J, Syed SA, Maehara K, Padilla-Benavides T, Ohkawa Y, Imbalzano AN. 2019. Calcineurin Broadly Regulates the Initiation of Skeletal Muscle-Specific Gene Expression by Binding Target Promoters and Facilitating the Interaction of the SWI/SNF Chromatin Remodeling Enzyme. Molecular and Cellular Biology 39: 10.1128/mcb.00063-19. DOI: 10.1128/MCB.00063-19

Yablonka-Reuveni Z, Rudnicki MA, Rivera AJ, Primig M, Anderson JE, Natanson P. 1999. The Transition from Proliferation to Differentiation Is Delayed in Satellite Cells from Mice Lacking MyoD. Developmental Biology 210: 440-455. DOI: 10.1006/dbio.1999.9284 o.1999.9284

Yin H, Price F, Rudnicki MA. 2013. Satellite Cells and the Muscle Stem Cell Niche. Physiological Reviews 93: 23-67. DOI: <u>10.1152/physrev.00043.2011</u>

Yuan S, Chen S, Xi Z, Liu Y. 2017. Copper-finger protein of Sp1: the molecular basis of copper sensing. Metallomics 9: 1169-1175. DOI: 10.1039/c7mt00184c

Zhou L, Wang Y, Zhou M, Zhang Y, Wang P, Li X, et al., Ding. 2018. HOXA9 inhibits HIF- $1\alpha$ -mediated glycolysis through interacting with CRIP2 to repress cutaneous squamous cell carcinoma development. Nature Communications 9: 10.1038/s41467-018-03914-5. DOI: 10.1038/s41467-018-03914-5

**Funding:** This work was supported by NIH grant NIAMS-R01AR077578 (to T.P.-B.). Supported by NIH NIAMS-R01AR077578 to Teresita Padilla-Benavides.

**Author Contributions:** Odette Verdejo-Torres: data curation, formal analysis, investigation, methodology, validation, writing - review editing. Teresita Padilla-Benavides: conceptualization, formal analysis, funding acquisition, project administration, resources, supervision, writing - original draft, writing - review editing.

Reviewed Bv: Anonymous

**History: Received** October 2, 2025 **Revision Received** November 12, 2025 **Accepted** November 13, 2025 **Published Online** November 19, 2025 **Indexed** December 3, 2025

**Copyright:** © 2025 by the authors. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International (CC BY 4.0) License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

**Citation:** Verdejo-Torres O, Padilla-Benavides T. 2025. Cysteine rich intestinal protein 2 links copper homeostasis to translational regulation in primary myoblasts. microPublication Biology. <a href="https://doi.org/10.17912/micropub.biology.001889">10.17912/micropub.biology.001889</a>