microPublication
BIOLOGY

11/26/2025 - Open Access

Localizations of the septin Spn4 tagged with GFP and mEGFP in fission
yeast

Jack R. Gregory'*%3, Nicholas J. Ricottilli, Jian-Qiu Wu'$
1Departrnent of Molecular Genetics, The Ohio State University, Columbus, Ohio, United States

zMolecular, Cellular, and Developmental Biology Graduate Program, The Ohio State University, Columbus, Ohio, United
States

3Cellular, Molecular, and Biochemical Sciences Program, The Ohio State University, Columbus, Ohio, United States
8$To whom correspondence should be addressed: wu.620@osu.edu

Abstract

Septins are cytoskeletal proteins crucial for cell division and many other processes. In fission yeast, septins localize to the
division site during septum formation. Recently, we conducted a study that elucidates the localizations and functionalities
of epitope-tagged septins. However, some questions remain outstanding. Here we assessed the impacts of monomeric
mEGFP and dimeric GFP(S65T) on the septin Spn4 tagged at either of its terminus. We found that septin levels were
important for its function, Spn4-mEGFP localized normally to the division site, but GFP(S65T)-Spn4 formed elongated
structures ectopically, further highlighting that dimeric tags are more disruptive to septin localizations.
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Figure 1. The localization of the septin Spn4 and morphology of the strains expressing Spn4 tagged with mEGFP
or GFP(S65T) at either N or C-terminus:

(A and B) Spn4 depletion leads to septation defects. Cells were grown in YESS and diluted as needed to ensure
exponential growth for ~36 h before imaging on a YE5S + gelatin pad. (A) Cell morphology from Differential Image
Contrast (DIC) and the signal of Spn4 showing the maximal intensity projection of 25 slices with 0.3 pm spacing. (B)
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Quantification of the number of septa per cell from DIC images of the indicated strains. (C-F) Localization and
quantification of Spn4 (filament lengths and protein levels) in the indicated strains. The indicated strains were grown in
YESS for ~12 h. Then, they were washed 3x with EMMS5S and grown exponentially in EMMS5S for ~24 h before imaging
on an EMMS5S + gelatin pad. (C) Cell morphology and the localization of Spn4 are shown via DIC, fluorescence images at
the middle focal plane and the maximal intensity projection of 25 slices with 0.3 pm spacing. (D) 3D volumetric
projections of 81nmt-mEGFP-spn4 and 81nmt1-GFP(S65T)-spn4 are shown for cells in interphase and during cytokinesis
(Ring). (E) The three longest Spn4 filaments (excluding the septin rings) from each cell were measured. n = 105 filaments
for each strain. (F) The mean Spn4 fluorescence intensity in the indicated strains after subtraction of the mean background
intensity in spn4A cells. n > 50 cells for each strain. Scale bars, 5 pm. Axial bars, 2 pm.

Description

The septin family of proteins was named after their critical functions for septum formation during cytokinesis in dividing
yeast cells (Ford & Pringle, 1991; Haarer & Pringle, 1987; Hartwell, 1971; Kim et al., 1991). In budding yeast, septins
first form as a nascent ring at the bud emergence and then form an hourglass with both longitudinal and latitudinal
filaments; these filaments transition into a double ring during cytokinesis, before dissociating from the division site after
the daughter cells separate (Byers & Goetsch, 1976; Chant et al., 1995; Marquardt et al., 2019, 2021; Rodal et al., 2005;
Varela Salgado & Piatti, 2024). Septins act as an essential scaffold for the myosin-II ring and other proteins at the bud
neck for cytokinesis and other processes (Bi et al., 1998; Gladfelter et al., 2001; Hartwell, 1971; Takizawa et al., 2000). In
other model organisms, the septins also serve as scaffolds and/or diffusion barriers and play crucial roles in many cellular
processes such as cytokinesis, plasma membrane repair, gamete formation, exocytosis, neuronal development, and others
(Fares et al., 1995; Gladfelter, 2006; Kinoshita et al., 1997; Kwitny et al., 2010; Onishi et al., 2010; Prislusky et al., 2024;
Singh et al., 2025; Tasto et al., 2003).

The septins accomplish these numerous functions by forming palindromic heterooligomers (An et al., 2004; Bertin et al.,
2008; Cavini et al., 2021). In most species, the septins form hexamers or octamers, which are the basic building block for
higher-order structures, composed of two units of each septin protein. The septins interact via their two faces— the G and
NC faces— forming G to G or NC to NC interactions (Sirajuddin et al., 2007). When forming the oligomers, the C
terminal tails of septins stick out from the complex (Cavini et al., 2021; Sirajuddin et al., 2007). Once formed, the
oligomers then polymerize into filaments that can assemble into rings, hourglass, gauzes, meshes, bars, fibers, patches,
and other structures in the cell (Bridges et al., 2014; Byers & Goetsch, 1976; Garcia et al., 2011; Hernandez-Rodriguez et
al., 2012; Rodal et al., 2005; Vrabioiu & Mitchison, 2006).

The fission yeast Schizosaccharomyces pombe is an attractive genetically tractable model organism to study septins and
other fundamental cellular processes (Fantes & Hoffman, 2016; Hoffman et al., 2015; Pollard & Wu, 2010). In S. pombe,
four septins are involved in cytokinesis, septum formation, and daughter-cell separation: Spn1, Spn2, Spn3, and Spn4 (An
et al., 2004; Berlin et al., 2003; Longtine et al., 1996; Tasto et al., 2003). The organization of the septins at the division site
is regulated by the anillin-like protein Mid2, while the actomyosin contractile ring is regulated by the other anillin-like
protein, Mid1 (Arbizzani et al., 2022; Béhler, et al., 1998; Berlin et al., 2003; Hachet & Simanis, 2008; Lee & Wu, 2012;
Petit et al., 2005; Saha & Pollard, 2012; Sohrmann et al., 1996; Tasto et al., 2003). The four septins localize to the division
site as unconstricted double rings on both sides of the contractile ring during cytokinesis and septum formation (An et al.,
2004; Berlin et al., 2003; Longtine et al., 1996; Tasto et al., 2003; Wu et al., 2003). They are crucial for the localizations
of Rho4 GTPase, Rho guanine nucleotide exchange factor Gef3, and the exocyst to the division site (Mufioz et al., 2014;
Singh et al., 2025; Wang et al., 2015).

We recently reported that the localization and function of septins are susceptible to epitope tagging (Gregory et al., 2025).
We found that the septins Spnl and Spn4 expressed under their native promoters have dramatically distinct localizations
on the plasma membrane with different fluorescence tags. The septins Spnl and Spn4 tagged with tdTomato and 3HA are
less functional or not functional at all, which results in localization artifacts on the plasma membrane or a loss of septin
localization and function (Gregory et al., 2025). By contrast, the septins tagged with mEGFP and mYFP are more
functional and localize normally to the division site (Gregory et al., 2025). Our results emphasize the need to rigorously
test the functionality of epitope-tagged septins and other proteins. However, several questions were left unanswered. First,
no mEGFP tagged Spn4 strains were available for comparison with GFP(S65T) tagged strains (Gregory et al., 2025),
which left us uncertain if the Spn4 localization we observed was caused by weak dimeric GFP(S65T) or not (Oltrogge et
al., 2014). Second, how the expression level of a single septin affects the overall septin localization and function remains
unclear in fission yeast.

We first tagged Spn4 with mEGFP at its C-terminus under its native promoter and at its N-terminus with the 41nmt1
(medium strength) and 81nmtl (weak) promoters using PCR-based gene targeting (Béhler, et al., 1998). The nmtl
promoters are induced in medium without thiamine and repressed with thiamine (Basi et al., 1993; Maundrell, 1990). A
previous study has reported that cells depleted of both Spnl and Spn4 in the 81nmt1-spnl 81nmt1-spn4 strain resemble
spnlA or spn4A cells (Wu et al., 2010). We found that 81nmt1-mEGFP-spn4 and 81nmt1-GFP(S65T)-spn4 cells grown in
YESS liquid media (with unknown amount of thiamine from yeast extract) resembled spn4A in cell morphology and
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septation index (Figure 1A-B). Consistently, Spn4 signal was barely visible in these cells (Figure 1A). Thus, low amounts
of Spn4 are not sufficient for normal septin localization and function.

Next, we compared the Spn4 localization (tagged with GFP[S65T] vs. mEGFP) and cell morphology in 81nmt1 (inducing
condition), 4Inmt1 (inducing condition), and C-terminally tagged spn4 strains using confocal microscopy (Figure 1C-F).
Overall, the mEGFP-tagged strains that expressed Spn4 at different levels showed no or much less Spn4 structures on the
plasma membrane or in the cytoplasm outside the septin double rings and were less likely to form elongated structures
than GFP(S65T)-tagged strains (Figure 1C-F). Interestingly, N-terminally tagged Spn4 seemed more likely to form
additional structures besides the rings, whereas Spn4-mEGFP appeared only in the rings at the division site as previously
reported for the more functional septin-fusion proteins (An et al., 2004; Gregory et al., 2025). Moreover, all the strains
resembled the wild type in cell morphology and septation index (Figure 1B-C).

To compare the differences between N-terminally mEGFP and GFP(S65T) tagged Spn4 strains in more detail, we
observed the 3D volumetric projections of the 81nmtl strains grown under inducing conditions (Figure 1D), which
expressed at levels close (slightly higher) to the C-terminally tagged Spn4 (Figure 1F). The mEGFP-tagged strain had
fewer elongated structures. In contrast, the GFP(S65T)-tagged strain had many long filaments, which even persisted after
the septin rings had formed at the division site (Figure 1D). Indeed, quantification of the three longest Spn4 structures (not
counting the septin rings) in each cell revealed that 81nmt1-GFP(S65T)-spn4 cells had significantly longer Spn4 structures
(Figure 1E). In time-lapse microscopy, the elongated structures more likely moved or flowed longer distances at a higher
velocity in 81nmt1-GFP(S65T)-spn4 than in 81nmt1-mEGFP-spn4 cells, which suggest that they are likely not associated
with the plasma membrane (Extended Data). These structures were reminiscent of the septin fibers or bars that we and
other labs observed previously (Davidson et al., 2016; DeMay et al., 2010; Gregory et al., 2025). It is unlikely these
different Spn4 structures are due to varied Spn4 protein levels because the quantification of the mean fluorescence
intensity revealed that Spn4 levels under the 81nmt1 promoter (inducing condition) were within a factor of two compared
to Spn4 under its native promoter (Figure 1F). Moreover, in 41nmt1-GFP(S65T)-spn4 but not in 41nmt1-mEGFP-spn4
cells, Spn4 formed similar elongated structures as in 81nmt1-GFP(S65T)-spn4 cells, despite the Spn4 levels being ~3-5
times higher (Figure 1F). Collectively, these structures, likely artefacts caused by the non-monomeric fluorophore, reveal
the range of possible structures that Spn4, and by implication the septin proteins, can form when perturbed. It is important
to note the impact of epitope tagging on Spn4 in particular because alongside Spnl, Spn4 forms the core of the septin
octamer in fission yeast (An et al., 2004). Spn4 and Spnl are essential for septin polymerization, and perturbations to
these septins may disrupt the formation of the septin complex (An et al., 2004; Gregory et al., 2025).

In conclusion, our study reveals that minimal levels of the septin Spn4 are important for septin localization and function.
We find that non-monomeric GFP(S65T) tagged Spn4 is more likely to form ectopic structures outside the septin rings.
We also show that both ends of Spn4 are susceptible to perturbations by an epitope tag, the N-terminus being more easily
perturbed. Caution and careful assessments are required when seeking to understand any potentially novel structures
formed by the septins.

Methods

Strains constructed and used in this study are listed in Table 1. We carried out gene targeting to tag Spn4 using the PCR-
based homologous recombination method as previously described (Béhler, et al., 1998; Rutherford et al., 2024). The C-
terminally tagged strains were controlled by the spn4 native promoter with the ADH1 terminator. For N-terminal tagged
strains, the nmt1 promoters and encoding sequences for mEGFP or GFP(S65T) were inserted before the start codon of
spn4 and the spn4 terminator was used. Growth (at 25°C), preparation, and imaging of fission yeast strains were done as
previously described (Davidson et al., 2015; Gregory et al., 2025; Singh et al., 2025; Ye et al., 2025; Zhang et al., 2025).
Briefly, each strain was woken up from the -80°C stocks onto YES5S plates. For strains grown in EMM5S minimal
medium, strains were first grown in YES5S rich liquid medium for ~12 h, then washed 3x with EMMS5S by spinning down
the cells at 3,000 rpm for 30 sec and resuspending in EMMS5S. The cells were then grown exponentially for ~24 h before
being imaged on EMMS5S + 20% gelatin pads (Davidson et al., 2016). For strains grown and imaged in YESS, strains
were grown exponentially in YE5S for ~36 h, and diluted twice a day to keep the cells in log phase of growth. Then, they
were imaged on YES5S + 20% gelatin pads, after being collected by centrifugation at 3,000 rpm for 30 sec. To protect the
cells from free radicals during imaging, n-propyl gallate (PG) was used at a final concentration of 5 pM. We imaged the
cells at ~23°C on a Nikon CSU-W1 SoRa spinning disk confocal microscope with Hamamatsu ORCA Quest gCMOS
camera C15550 on Nikon Eclipse Ti2 microscope with Plan Apo AD 100x/1.45 numerical aperture (NA) oil objective.
Both mEGFP and GFP(S65T) fluorescently tagged proteins were imaged with a 488 nm laser at 30% power for single Z
stacks and 20% power for movies.

All image analyses were done on either NIS elements or Fiji as previously described (Davidson et al., 2016; Gregory et
al., 2025; Longo et al., 2022; Singh et al., 2025; Ye et al., 2025). Filament length was measured by drawing a line in Fiji
along the length of the three longest filaments in individual cells. Fluorescence intensity was measured by drawing an ROI
around the periphery of individual cells to measure the mean intensity. The intensities for all the measured cells were
corrected for the background by subtracting the mean intensity from 50 spn4A cells. The brightness difference between


https://www.pombase.org/spombe/result/SPAC9G1.11c
https://www.pombase.org/spombe/result/SPAC9G1.11c
https://www.pombase.org/spombe/result/SPAC9G1.11c
https://www.pombase.org/spombe/result/SPAC9G1.11c
https://www.pombase.org/spombe/result/SPAC9G1.11c
https://www.pombase.org/spombe/result/SPAC9G1.11c
https://www.pombase.org/spombe/result/SPAC9G1.11c
https://www.pombase.org/spombe/result/SPAC9G1.11c
https://www.pombase.org/spombe/result/SPAC9G1.11c
https://www.pombase.org/spombe/result/SPAC9G1.11c
https://www.pombase.org/spombe/result/SPAC9G1.11c
https://www.pombase.org/spombe/result/SPAC9G1.11c
https://www.pombase.org/spombe/result/SPAC9G1.11c
https://www.pombase.org/spombe/result/SPAC9G1.11c
https://www.pombase.org/spombe/result/SPAC9G1.11c
https://www.pombase.org/spombe/result/SPAC9G1.11c
https://www.pombase.org/spombe/result/SPAC9G1.11c
https://www.pombase.org/spombe/result/SPAC9G1.11c
https://www.pombase.org/spombe/result/SPAC9G1.11c
https://www.pombase.org/spombe/result/SPAC9G1.11c
https://www.pombase.org/spombe/result/SPAC9G1.11c
https://www.pombase.org/spombe/result/SPAC9G1.11c
https://www.pombase.org/spombe/result/SPAC9G1.11c
https://www.pombase.org/spombe/result/SPAC9G1.11c
https://www.pombase.org/spombe/result/SPAC9G1.11c
https://www.pombase.org/spombe/result/SPAC4F10.11
https://www.pombase.org/spombe/result/SPAC9G1.11c
https://www.pombase.org/spombe/result/SPAC9G1.11c
https://www.pombase.org/spombe/result/SPAC4F10.11
https://www.pombase.org/spombe/result/SPAC9G1.11c
https://www.pombase.org/spombe/result/SPAC9G1.11c
https://www.pombase.org/spombe/result/SPAC9G1.11c
https://www.pombase.org/spombe/result/SPAC9G1.11c
https://www.pombase.org/spombe/result/SPAC9G1.11c
https://www.pombase.org/spombe/result/SPAC9G1.11c
https://www.pombase.org/spombe/result/SPAC9G1.11c

microPublication
BIOLOGY
11/26/2025 - Open Access

mEGFP and GFP(S65T) was corrected by dividing the GFP(S65T) values by 0.91, which is the conversion rate calculated
from each fluorophore's extinction coefficient and quantum yield (Cranfill et al., 2016; Patterson et al., 1997). The p value
was calculated using unpaired two-tailed Student's t-test.

Reagents

Strain name Genotype Figure/Movie

Jw81 h- ade6-210 ura4-D18 leul-32 For gene targeting
JW295 h+ spn4A::kanMX6 leul-32 ura4-D18 Figure 1A, B, F
JW10492 h- spn4-mEGFP:kanMX6 ade6-M210 leul-32 ura4-D18 Figure 1C, F

JW8589 spn4-GFP(S65T):kanMX6 adeb6 leul-32 ura4-D18 Figure 1C, F
JW10461 h- kanMX6:81nmt1-mEGFP-spn4 ade6-210 ura4-D18 leul-32 Figure 1A-F; Movie 1
JW311 h- kanMX6:81nmt1-GFP(S65T)-spn4 ade6-M210 leul-32 ura4-D18 Figure 1A-F; Movie 1
JW10474 h- kanMX6:41nmt1-mEGFP-spn4 ade6-210 ura4-D18 leul-32 Figure 1C, F

JW310 h- kanMX6:41nmt1-GFP(S65T)-spn4 ade6-M210 leul-32 ura4-D18 Figure 1C, F

Plasmid name

JQW75 pFA6a-kanMX6-P41nmt1-mEGFP

JQW78 pFA6a-kanMX6-P81nmt1-mEGFP

JQW85 pFA6a-mEGFP-kanM X6
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Extended Data

Description: Movie 1. Time-lapse microscopy of the septin Spn4 in 81nmt1-mEGFP-spn4 and 81nmt1-GFP(S65T)-spn4
strains. The indicated strains were grown in YESS for ~12 h, and then were washed 3x with EMMS5S and grown
exponentially in EMMS5S for ~24 h at 25°C. These strains were imaged on an EMMS5S + gelatin pad using a spinning disk
confocal microscope every 30 sec for 1 h. Maximal intensity projection of 5 slices with 2 pm spacing are shown. 7 frames
per second.. Resource Type: Audiovisual. File: Movie 1.mp4. DOI: 10.22002/e4bh4-a6g30
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