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Abstract
Primary cilia, microtubule-based sensory organelles that mediate cell–cell communication, may facilitate signaling in the
brain through direct physical contacts (e.g., synapse-like structures). Similarly, specialized glial cells lining the third
ventricle (3V) called tanycytes signal through physical interactions and can dynamically alter their morphology in
response to external stimuli and physiological changes. Here, we identify robust cilia-tanycyte contacts; we term HUGS
(Hypothalamic, Unifying Glia-cilia Structures) and discover that these connections are disrupted in a mouse ciliopathy
model (Bbs4) exhibiting hypothalamic dysfunction. These data provide insight into potentially new cell-cell signaling
mechanisms deployed by neuronal cilia. 
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Figure 1. Defining and Assessing HUGS in the mouse hypothalamus :

A. (Left) Schematic of the third ventricle (3V) of the mouse brain. Ependymal cells (blue) and tanycyte populations
(Alpha 1: yellow, Alpha 2: green, Beta 1: red, Beta 2: orange). Neuroanatomical nuclei and structures of the hypothalamus
are also indicated including the ventromedial hypothalamus (VMH), arcuate nucleus (ARC), and the median eminence
(ME). (Middle) Confocal immunofluorescence image of the ventricle with tanycytes (Vim, red), cilia (Adcy3, green), and
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nuclei (Hoechst, blue). Scale bar 100µm. (Right) Inset from the same image with an example of cilia HUGS, indicated
with a white circle. Scale bar 30µm. B. Computer assisted HUGS analysis. (Left) Region Of Interest (ROI, gray) is
defined to exclude the 3V space.  (Middle) Binaries for cilia (red) are defined using thresholding. Inset indicated with a
white circle shows the binary (red) for individual cilia. (Right) Binaries for tanycytes (purple) are defined using
thresholding. Inset indicated with a white circle shows the binary for cilia (red) and tanycytes (purple). C. Assessing
HUGS of wildtype adult male and female mice. Confocal immunofluorescence image of tanycytes (Vim, red), cilia
(Adcy3, green) and nuclei (Hoechst, blue). Scale bar 100µm. Inset of cilia HUGS indicated with a white circle. Scale bar
30µm. An individual HUGS structure from a 3D movie (HUGS From Movies 1 and 2). Scale Bar 20µm. Quantification of
average number of HUGS (%) between female and male mice shows no statistical significance (One-Way ANOVA test).
D. Assessing HUGS of a mutant ciliopathy mouse model. Confocal immunofluorescence image of tanycytes (Vim, red),
cilia (Adcy3, green) and nuclei (Hoechst, blue) of Bbs4 wildtype (wt), heterozygous (+/-) and mutant (-/-) animals. Scale
bar 100µm. Inset of HUGS indicated with a white circle. An individual HUGS structure from a 3D movie (HUGS From
Movies 3, 4 and 5).Scale bar 20µm. Quantification of average number of HUGS % between wt, +/-, and -/- male and
female animals shows a significant reduction in HUGS of +/- and -/- compared to wt littermates (One-Way ANOVA test, *
indicates p < 0.05). E. Quantification of the percentage of Adcy3+ cilia to number of cells in wt, +/-, and -/- animals.
(One-way ANOVA, * indicates p<0.05, ** indicates p<0.0001). F. Quantification of the percentage of Adcy3+ cilia
HUGS and Non-HUGS to number of cells in wt, +/-, and -/- animals. (One-way ANOVA, * indicates p<0.05, ** indicates
p<0.0001).

Description
Primary cilia are present on nearly all hypothalamic cell types including neurons (Bishop et al., 2007; Jurisch-Yaksi et al.,
2024) and are well established as sensory organelles. Their functions in the CNS are best characterized in vision and
olfaction, where specialized G protein–coupled receptors localize to the ciliary membrane, detect extracellular ligands,
and initiate signaling cascades essential for sensory perception (Singla & Reiter, 2006). In hypothalamic neurons, primary
cilia similarly regulate feeding and circadian rhythms through ligand–receptor signaling (Davenport et al., 2007; Ojeda-
Naharros et al., 2025; Oya et al., 2024; Xun et al., 2025) (Bernard et al., 2023; Siljee et al., 2018; Tu et al., 2023; Wang et
al., 2021). Recent evidence further suggests that neuronal cilia may not only receive external cues but also engage in
direct, contact-dependent communication with neighboring cells, in some cases resembling synapse-like interactions (Ott
et al., 2024; Sheu et al., 2022; Volos et al., 2025; Wu et al., 2024). These expanding roles for ciliary signaling raise
important questions about how sensory information from outside the brain is relayed to hypothalamic circuits that regulate
physiology.

Tanycytes are specialized, highly polarized glial cells lining the third ventricle and represent a compelling candidate for
mediating this communication. Unlike typical ependymal cells, tanycytes consist of distinct subtypes (α1, α2, β1, β2) and
display pronounced apical–basal polarity (Dali et al., 2023). Their apical surfaces extend primary cilia into the
cerebrospinal fluid, while their elongated basal processes project deep into hypothalamic parenchyma, where they contact
neurons, glia, and blood-vessel pericytes (Mullier et al., 2010; Pasquettaz et al., 2021). This architecture enables tanycytes
to integrate peripheral signals by passively sensing molecules such as glucose and actively transporting hormones and
neuropeptides like insulin and leptin into the brain in order to influence neuronal pathways regulating energy homeostasis
(Balland et al., 2014; Frayling et al., 2011; Porniece Kumar et al., 2021). Together, these features position tanycytes as a
potential interface through which peripheral metabolic cues could engage neuronal ciliary signaling to shape hypothalamic
function.

Building on this idea, we asked whether tanycyte processes might physically engage neuronal cilia to provide input into
hypothalamic circuits. To test this, we immunostained tanycytic processes with vimentin and labeled neuronal cilia with
adenylate cyclase III (Adcy3) (Bishop et al., 2007; Robins et al., 2013; Schnitzer et al., 1981). We hypothesize that
tanycytic processes form specialized structural contacts with neuronal cilia in the hypothalamus, in a manner similar to the
known ability of cilia to eavesdrop on synapses in the human cortex, differentiated hypothalamic neurons and mouse
hippocampus (Wu et al., 2024).

Using confocal fluorescence microscopy, we developed an assay to identify and analyze these tanycyte–cilia contacts
which we term Hypothalamic Unifying Glia–cilia Structures or HUGS for short (Figure 1A). We used a computer-
assisted image analysis pipeline adapted from our previously reported cilia analysis methods using NIS Elements (Brewer
et al., 2024; Brewer et al., 2023). Within defined regions of interest (ROI), we generated binary masks for cilia (cilia
binary) and tanycytic processes (tanycyte binary) separately (Figure 1B). We then established a “parent–child”
hierarchical structure in which cilia binaries were assigned as children to the closest parent, i.e. tanycyte binary. The
distance between the two structures was calculated, and contacts with a measured distance of 0μm were classified as
HUGS, indicating potentially direct contact between a cilium and a tanycytic process. This rapid, unbiased approach
enabled high-throughput quantification of hundreds of HUGS across multiple images per animal, yielding a
comprehensive view of their frequency and characteristics while increasing our sensitivity to detect subtle changes.
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We first applied this approach in adult C57Bl/6 male and female mice. Although the hypothalamus is a sexually dimorphic
brain region, including tanycytes themselves (Ciofi et al., 2006; Prevot et al., 2018; Simerly et al., 1997), we detected no
sex-specific differences in the number of HUGS, with ~30% of cilia within the ROIs forming HUGS with tanycytic
processes (Figure 1C and Movies 1 and 2).

We next asked whether HUGS are altered in a ciliopathy model that is known to be associated with hypothalamic
dysfunction. Using Bardet–Biedl syndrome 4 gene (Bbs4) mutant mice, we observed a significant reduction in HUGS in
both heterozygous (Bbs4+/−) and homozygous (Bbs4−/−) mutants compared to wildtype sibling controls (Figure 1D).
Interestingly, it is well-characterized that neuronal cilia marker Adcy3 is less frequent in adult ciliopathy mouse brains
which we also observe in our samples (Figure 1E) (Agassandian et al., 2016; Agassandian et al., 2014; Berbari et al.,
2008). To address if the reduction in HUGS of mutant animals was correlated with an overall reduction in cilia abundance
or total cell number rather than cilia-tanycyte interactions, we normalized the number of HUGS to total cell count using a
threshold for Hoechst staining. This allowed us to quantify and assess total cilia, which includes those engaged in HUGS
and all other cilia compared to the total number of cells within each ROI (Figure 1F). While HUGS per total cell count
were not significantly different across genotypes, total cilia were reduced in a genotype–dependent manner with wildtype
(wt) animals having more than heterozygotes (Bbs4+/−) which had more than mutants (Bbs4−/−) (Figure 1E and Movie 3,
4 and 5). These data demonstrate that tanycytes and cilia interact in the hypothalamic parenchyma and that these
interactions are altered in a ciliopathy model.

Together, these findings demonstrate that tanycytes potentially form direct physical contacts with neuronal primary cilia in
the mouse hypothalamus. By establishing a quantitative framework for analyzing these interactions, we show that HUGS
are a robust and consistent feature across sexes but are disrupted in a ciliopathy model. Given their location, HUGS may
relay metabolic or hormonal cues from the cerebral spinal fluid or serum directly onto ciliated neurons in the
hypothalamus, modulating their activity. Additionally, HUGS may serve to stabilize cilia structure or regulate access of
receptors and adhesion molecules at the ciliary membrane. These ideas all suggest that tanycyte–cilia contacts (HUGS)
represent an underappreciated form of glia–neuron communication with potential relevance for hypothalamic signaling in
health and disease.

Having established this framework, our next steps are to expand analyses of HUGS in ciliopathy mice by incorporating
measures such as the ratio of HUGS to total cilia. We also plan to investigate how HUGS prevalence and structure vary
across developmental stages and aging, and to determine whether HUGS preferentially form with specific neuronal or
glial subtypes or in association with distinct ciliary receptors and potentially deploy specific adhesion molecules recently
identified in cilia proteomics approaches in the brain (Chang et al., 2025). These studies will clarify whether HUGS
represents a general principle of hypothalamic organization or a specialized signaling mechanism with cell-type and
receptor specificity.

Methods
Mouse Lines

Mice were housed under a standard 12-hour light/dark cycle with ad libitum food and water. All animal protocols and
procedures were performed in accordance with the Institutional Animal Care and Use Committee (IACUC) at Indiana
University - Indianapolis. Adult (8-week-old) male and female C57Bl/6J (stock #000664) and Bbs4 (B6.129-Bbs4tm1Vcs/J
Stock #010728) mice were used for analyses (Mykytyn et al., 2004).

Tissue Collection

Tissue was collected at 8 weeks of age, previously described (Brewer et al., 2024). Briefly, the mice were anesthetized
with 0.1 mL/10 g of body weight dose of 2.0% tribromoethanol (Sigma Aldrich, St. Louis, MO, USA) and perfused
transcardially with PBS, followed by 4% paraformaldehyde (PFA) (catalog no. 15710, Electron Microscopy Sciences,
Hatfield, PA, USA). Brains were isolated and postfixed in 4% PFA for 4 hours at 4 °C and then cryoprotected with 30%
sucrose in PBS for 16–24 hours at 4 °C. Brains were embedded in optimal cutting temperature compound (OCT) and
cryosectioned at 15 µm directly onto slides for staining.

Immunofluorescence 

Cryosections were washed twice with PBS for 5 min and then permeabilized and blocked in a PBS solution containing 1%
BSA, 0.3% Triton X-100, 2% (v/v) donkey serum, and 0.02% sodium azide for 30 min at RT. The sections were incubated
with primary antibodies at 4 °C. The primary antibodies included cilia marker Adcy3 (1:1000 dilution; catalog no. CPCA-
ACIII, EnCor, Gainesville, FL, USA) and Vimentin (1:300 dilution; catalog no. EPR3776, Abcam, Waltham, MA, USA).
The sections were then washed twice for 5 min with PBS and 3 times for 5 min with blocking solution described above.
Then sections were incubated in secondary antibodies for 1.5 hours at room temperature. The secondary antibodies
include donkey conjugated Alexa Fluor 488, and 647 (1:1000; Invitrogen, Carlsbad, CA, USA and
Jackson Immuno Research, West Grove, PA, USA) against appropriate species according to the corresponding
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primary.  The slides were then washed in PBS and counterstained with Hoechst nuclear stain (1:1000; catalog
no. H3570, Thermo Fisher Scientific) for 5 min at room temperature. Coverslips were mounted using SlowFade Diamond
Antifade Mountant (catalog no. S36972, Thermo Fisher Scientific). All primary and secondary solutions were made in the
blocking solution described above. 

Imaging and Analysis

Images were captured using a Nikon Ax confocal microscope (40X water lens objective) and cilia HUGS were identified
and analyzed using Nikon Elements Software (NIS Elements). Computer-assisted cilia analysis was performed as
previously described (Bansal et al., 2021; Brewer et al., 2024; Brewer et al., 2023). Thresholding was used to identify
cilia, tanycytes, and Hoechst-positive nuclei. As part of our approach, cilia were identified to be objects   1.5 μm in length.
Any background staining was eliminated through exclusion filtering of the cilia threshold binary by sphericity    0.850
(value 1 = perfect sphere) and large volume staining ≥60.0 μm3.  Once parents (tanycyte binaries) and children (cilia
binaries) were identified, distances between the child and the closest parent were measured. Distances of 0 μm between a
parent and child were counted as HUGS.

Reagents

Reagent Company (Cat. No.) Application 

Vimentin antibody Abcam (EPR3776) Tanycyte marker 

ACIII antibody EnCor (CPCA-ACIII) Cilia marker 

Hoechst ThermoFisher (H3570) Nuclei stain 

Donkey Anti-Rabbit 488 Invitrogen (A31573) Secondary antibody 

Donkey Anti-Chicken 647 Jackson Immuno Research (703-605-
155) Secondary antibody 

16% Paraformaldehyde E.M.S. (15710) Tissue fixation 

Optimal Cutting Temperature Embedding
Medium Fisher (4585) To cryoprotect tissue

specimens 

ProLong Diamond Slow Fade Mountant  ThermoFisher (P36970) Mount slides after staining 

Extended Data
Description: Movie 1 Male HUGS which corresponds to data in third column of 1C. Resource Type: Audiovisual. File:
Movie 1 Male.mp4. DOI: 10.22002/n6zc5-6q846

Description: Movie 2 Female HUGS which corresponds to data in third column of 1C. Resource Type: Audiovisual. File:
Movie 2 Female.mp4. DOI: 10.22002/hsxaz-g6y86

Description: Movie 3 Bbs4 wildtype HUGS which corresponds to data in third column of 1D. Resource Type:
Audiovisual. File: Movie 3 Bbs4 Wildtype.mp4. DOI: 10.22002/m6zjh-d0390

Description: Movie 4 Bbs4 heterozygote HUGS which corresponds to data in third column of 1D. Resource Type:
Audiovisual. File: Movie 4 Bbs4 Heterozygote.mp4. DOI: 10.22002/30vph-fn897

Description: Movie 5 Bbs4 mutant HUGS which corresponds to data in third column of 1D. Resource Type: Audiovisual.
File: Movie 5 Bbs4 Mutant.mp4. DOI: 10.22002/5n2jk-man67
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