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Abstract
Motor Exit Point (MEP) glia are spinal cord-derived glial cells that myelinate peripheral motor axons, bridging the central
and peripheral nervous systems. They have a hybrid profile, sharing features with oligodendrocytes and Schwann cells.
Yet, significant gaps remain in our understanding of complex MEP glial lineage and identity. MEP glia express neural
tube and canonical oligodendrocyte lineage markers olig2 and nkx2.2a, as well as the neural crest marker foxd3. Here, we
show that the oligodendrocyte markers olig1 and plp1b are not expressed in MEP glia. These findings refine the molecular
signature of MEP glia, enhancing their peripheral identity.
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Figure 1. MEP glia express some, but not all, CNS markers:

(A) Lateral views of a peripheral motor nerve in a tg(nkx2.2a:nls:eGFP);tg(olig2:dsRed2) zebrafish larva demonstrating
nkx2.2a (cyan) and olig2 (magenta) expression in MEP glia (white arrows) at 55 hpf. N = 60/60 nerves from 10 larvae.
Scale bars: 10 µm.

(B) Lateral views of a peripheral motor nerve in a gt(foxd3:mCherry);tg(olig1:gal4;uas:eGFP) zebrafish larva showing
that MEP glia (white arrows) express foxd3 (orange), but not olig1 (purple) at 3 dpf. White asterisks denote the dorsal root
ganglion. N = 60/60 nerves from 10 larvae. Scale bars: 15 µm.

(C) Whole-mount lateral view and schematic of a plp1b RNA in situ hybridization in a 4 dpf zebrafish larva showing
expression in oligodendrocytes in the spinal cord exclusively. N = 20/20 larvae. CNS: central nervous system; PNS:
peripheral nervous system; OL: oligodendrocyte; mn: motor nerve. Scale bar: 25 µm.
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(D) Cross-section of a 4 dpf zebrafish larva plp1b in situ hybridization showing localization of plp1b RNA within spinal
cord regions where oligodendrocytes are typically found (black arrows). No signal is detected at the MEP TZ outside of
the CNS. N = 200/200 sections from 10 larvae. sc: spinal cord; nc: notochord. Scale bar: 15 µm.

Description
Myelinating glia in the vertebrate nervous system are traditionally distinguished by their developmental origin and their
function: oligodendrocytes originate from and myelinate axons in the central nervous system (CNS) (Almeida et al.,
2011), and Schwann cells originate from and myelinate axons in the peripheral nervous system (PNS) (Jessen & Mirsky,
1999; Lyons et al., 2005). However, at transition zones (TZs) where central and peripheral nervous tissues meet, this
dichotomy is not abrupt (Fontenas, 2023; Fontenas & Kucenas, 2018, 2021; Smith et al., 2014). In zebrafish, a distinct and
dynamic population of glial cells, known as motor exit point (MEP) glia, can cross MEP TZs (Fontenas & Kucenas, 2018,
2021). Unlike oligodendrocytes and Schwann cells, which remain within their respective domains, MEP glia originate in
the lateral floor plate of the neural tube and migrate out of the CNS to myelinate peripheral motor axons (Fontenas &
Kucenas, 2018, 2021). They are a centrally derived population of peripheral myelinating glia that have a specialized role
to maintain the CNS-PNS boundary, ensheathing the region between Schwann cells in the PNS and oligodendrocytes in
the spinal cord (Fontenas & Kucenas, 2018).

In addition to their central origin and peripheral functioning, MEP glia have a hybrid identity, uniquely expressing both
CNS-associated and PNS-associated markers (Fontenas & Kucenas, 2018, 2021). Like both oligodendrocytes and
Schwann cells, they express sox10, a transcription factor essential for specifying and maintaining myelinating glial fates in
both fish and mammalian systems (Britsch et al., 2001; Dutton et al., 2001; Fontenas & Kucenas, 2018, 2021; Smith et al.,
2014; Stolt et al., 2002). Prior work has demonstrated that MEP glia also express oligodendrocyte lineage markers olig2
(Fontenas & Kucenas, 2018, 2021) and nkx2.2a (Fontenas & Kucenas, 2021). Consistent with these findings, using
tg(olig2:dsRed2);tg(nkx2.2a:nls-egfp) double-transgenic larvae and in vivo confocal imaging, we observed expression of
olig2 and nkx2.2a in MEP glia at 55 hours post fertilization (hpf), when they populate peripheral motor nerves (Fig. 1A).
Although olig2 expression diminishes as MEP glia exit the spinal cord, a transient signal can still be detected (Fontenas &
Kucenas, 2021). In contrast, nkx2.2a expression is robust and remains strong throughout post-embryonic stages (Fontenas
& Kucenas, 2021). These markers are indicative of the origin of MEP glia from radial glia precursors, which are also
known to generate motor neurons, oligodendrocytes, interneurons, and perineural glia (Fontenas & Kucenas, 2021).

Our previous studies show that MEP glia also express foxd3, a transcription factor associated with neural crest-derived
glia (Fontenas & Kucenas, 2018, 2021; Smith et al., 2014). Foxd3 is required for MEP glia to delaminate from the lateral
floor plate and is also expressed in Schwann cells and dorsal root ganglia (Fontenas & Kucenas, 2021; Gilmour et al.,
2002; Hochgreb-Hägele & Bronner, 2013). To further characterize MEP glia expression patterns, we imaged
tg(olig1:Gal4;UAS:egfp);gt(foxd3:mcherry) larvae at 3 days post fertilization (dpf), a developmental timepoint that
corresponds to oligodendrocyte olig1 expression. Although MEP glia express several CNS-associated markers known as
neural tube domain identity markers, they do not express olig1 (Fig. 1B), a transcription factor restricted to
oligodendrocyte lineage cells and that contributes to their proper differentiation and myelination (Dai et al., 2015; Li et al.,
2007). This highlights another key molecular distinction between MEP glia and oligodendrocytes, suggesting that MEP
glia only partially overlap with the oligodendrocyte differentiation program and adopt a more peripheral identity.

Because myelinating MEP glia express myelin basic protein (mbp), we next sought to investigate whether myelinating
MEP glia express proteolipid protein 1b (plp1b), a major constituent of oligodendrocyte myelin sheaths (Brösamle &
Halpern, 2002; Emery & Lu, 2015). Using an in situ hybridization detecting plp1b on 4 dpf larvae, we found that plp1b
expression is limited to the CNS (Fig. 1C). To more precisely assess its spatial distribution, larvae were cryosectioned, and
cross sections of the spinal cord were imaged. This revealed robust plp1b signal exclusively within the spinal cord,
localized to the lateral, ventral, and medial regions occupied by myelinating oligodendrocytes (Fig. 1D). No plp1b signal
was detected along peripheral motor nerves, where MEP glia myelinate axons. Other oligodendrocyte markers, such as
myelin regulatory factor (myrf), are also absent, based on single-cell RNA sequencing data (Scott et al., 2021).

These findings refine the hybrid molecular identity of MEP glia, highlighting their divergence from an oligodendrocyte
lineage trajectory. These data further establish MEP glia as a unique myelinating cell type at the CNS-PNS interface.

Methods
Husbandry and generation of embryos: All animal studies were approved by the Florida Atlantic University (FAU)
Animal Care and Use Committee. Zebrafish strains used in this study were: AB*, Tg(nkx2.2a(3.5):nls-egfp)uva1 (Fontenas
& Kucenas, 2021), Tg(olig2:dsRed2)vu19 (Shin et al., 2003), Tg(olig1:Gal4)fla1 (this paper), Tg(UAS:egpf)nkuasgfp1a

(Asakawa et al., 2008), and Gt(foxd3:mcherry)ct110R (Hochgreb-Hägele & Bronner, 2013). Embryos were raised at 28.5
°C in egg water and staged by hpf and dpf. Zebrafish cannot be sexed until adulthood; therefore, embryos of undetermined
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sex were used. Pigmentation was inhibited in embryos using phenyl-thiourea (PTU) (0.004%) in egg water. All studies
were conducted using stable, germline transgenic lines.

Fish were housed and maintained in our fish facility at FAU under standard laboratory conditions. Adult zebrafish strains
were kept at 28 °C on a 14-hour light, 10-hour dark cycle. To generate embryos, adult male and female zebrafish were
housed in breeding tanks overnight and allowed to spawn naturally.

In vivo confocal imaging: Embryos were anesthetized with 0.01% 3-aminobenzoic acid ester (Syncaine) and embedded in
0.8% low-melting point agarose in a 35-mm glass-bottom imaging dish. Egg water containing PTU and Tricaine was
added to the imaging dish after mounting. Images were captured using a Dragonfly inverted spinning disk confocal
microscope with a motorized stage and a 40X/1.15 numerical aperture water immersion objective. Images were processed
in Imaris to change channel colors, adjust levels and contrast, and crop the field of view.

In situ hybridization: Larvae were fixed at 4 dpf in 4% paraformaldehyde 1X phosphate-buffered saline at 4 °C overnight
and stored in 100% methanol at -20 °C until processing. The plp1b RNA probe was generated using the following
primers: plp1b FWD TCTCTGGAGTGAGCGAACGA and plp1b REV taatacgactcactatagCA
GATCAGAGCGAGCACGTA; and t7 RNA polymerase. Whole-mount in situ hybridization was performed following
standard protocols. Samples were imaged whole mount by embedding in 0.8% low-gelling temperature agarose in a glass-
bottom 35 mm imaging dish. Samples were embedded in 1.5% agar/5% sucrose cryoblocks and sectioned using a Leica
CM1950 cryostat. Brightfield whole-mount and sectioned images were obtained using a Keyence All-in-One BZ-X810
fluorescence microscope at 10X and 40X, respectively. Images were imported into Adobe Photoshop to adjust levels,
contrast, and cropping.

Reagents

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibody

Sheep Anti-Digoxigenin-AP, Fab fragments Sigma Cat#11093274910; RRID:
AB_514497

Chemicals and Recombinant Proteins

3-Aminobenzoic acid ester (Syncaine) Pentair TRS1

1-Phenyl-2-thiourea (PTU) Sigma Cat#P7629; CAS number 103-
85-5

Paraformaldehyde (PFA) Sigma Cat#158127

Agarose, low gelling temperature Sigma Cat#A94114

DIG RNA labeling mix Sigma Cat#11 277 073 910

Enzyme

T7 RNA polymerase New England Biolabs Cat#M0251

Experimental Models: Organisms/Strains

Zebrafish: AB* ZIRC  

Zebrafish: Tg(nkx2.2a(3.5):nls-eGFP)uva1 (Fontenas & Kucenas, 2021) ZDB-ALT-211118-4

Zebrafish: Tg(olig2:dsRed2)vu19 (Shin et al., 2003) ZDB-ALT-080321-2
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Zebrafish: Tg(olig1:Gal4)fla1 This paper N/A

Zebrafish: Tg(5XUAS:eGPF)nkuasgfp1a (Asakawa et al., 2008) ZDB-ALT-080528-1

Zebrafish: Gt(foxd3:mCherry)ct110R (Hochgreb-Hägele &
Bronner, 2013) ZDB-ALT-130314-2

Oligonucleotides

Plp1b FWD TCTCTGGAGTGAGCGAACGA This paper N/A

t7 + Plp1b REV taatacgactcactatag
CAGATCAGAGCGAGCACGTA This paper N/A

Software and Algorithms

Imaris Oxford Instruments Imaris

Adobe Photoshop 2025.23.0.0 Adobe Adobe
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